
Elastic Consistent Hashing for
Distributed Storage Systems

Wei Xie and Yong Chen
Department of Computer Science, Texas Tech University, Lubbock, TX 79413

Abstract—Elastic distributed storage systems have been in-
creasingly studied in recent years because power consumption
has become a major problem in data centers. Much progress
has been made in improving the agility of resizing small- and
large-scale distributed storage systems. However, most of these
studies focus on metadata based distributed storage systems. On
the other hand, emerging consistent hashing based distributed
storage systems are considered to allow better scalability and are
highly attractive. We identify challenges in achieving elasticity
in consistent hashing based distributed storage. These challenges
cannot be easily solved by techniques used in current studies.
In this paper, we propose an elastic consistent hashing based
distributed storage to solve two problems. First, in order to
allow a distributed storage to resize quickly, we modify the
data placement algorithm using a primary server design and
achieve an equal-work data layout. Second, we propose a selective
data re-integration technique to reduce the performance impact
when resizing a cluster. Our experimental and trace analysis
results confirm that our proposed elastic consistent hashing works
effectively and allows significantly better elasticity.

I. INTRODUCTION

The growing power consumption is a critical issue for data
centers. It adds substantial cost to an organization and not to
mention the carbon footprint. Elastic distributed storage sys-
tems have gained increasing attention in recent years in order
to alleviate this problem [1]. Such storage systems attempt to
achieve power-proportionality by making power consumption
proportional to the dynamic system load leveraging the periods
with light load.

Most existing studies [2]–[5] consider resizing the storage
cluster as the fundamental technique to achieve power propor-
tionality. When the system load decreases, some of the storage
servers in the cluster are powered off. When the load increases,
these servers are powered back on. To achieve better elasticity
by resizing the storage cluster, several techniques have been
introduced in recent studies. For instance, a primary server
design is introduced in Sierra [2] and has been used in several
other studies too [3], [5]. It ensures that a full data copy is
maintained in a small subset of servers called primary servers.
With primary server design, no clean-up work is needed when
powering down several storage servers. To achieve better
performance, the data layout needs to be modified [3] for
performance proportionality along with power proportionality.
In addition, since the small number of primary servers limits
the write performance, several recent studies [3], [5] propose to
dynamically change the number of primary servers to balance
the write performance and elasticity.

Existing efforts have demonstrated the importance and
effectiveness of provisioning elasticity in distributed storage

systems. However, these efforts and methodologies focus on
conventional distributed storage systems with metadata servers,
for example the Hadoop Distributed File System (HDFS) [6].
Consistent hashing based distributed storage systems are
emerging in data centers recently due to significantly better
scalability potential and easy manageability [7]–[9]. Compared
to distributed storage systems with metadata servers, they do
not have a metadata service to manage the mapping from data
to storage servers. Instead, they use a deterministic hash func-
tion to determine the placement of data items. However, these
different characteristics of consistent hashing based distributed
storage make it challenging to achieve elasticity and power-
proportionality.

In this study, we introduce a series of techniques for en-
abling the power-proportionality for consistent hashing based
distributed storage systems. The design of the elastic consistent
hashing is inspired by existing techniques that are proven
effective in prior studies. We introduce primary server data
placement and equal-work data layout to make it possible to
scale down to very few active servers with small data move-
ment. We propose a selective data re-integration technique to
alleviate the performance degradation when a cluster resizes.
The proposed techniques are implemented on Sheepdog stor-
age system and evaluated with a storage cluster testbed. We
also conduct analysis based on real-world traces and compare
our proposed techniques against the original system. We find
that the proposed elastic consistent hashing techniques are
able to achieve both better elasticity and performance, and
saves significantly more machine hours (which means power
consumption). The contribution of this study includes:

• To the best of our knowledge, this is the first study to
systematically investigate the elasticity in consistent
hashing based storage systems.

• We introduce an elastic consistent hashing that not
only adapts existing elasticity techniques to consistent
hashing but also introduces new selective data re-
integration techniques to alleviate the performance
impact of data migration.

• We demonstrate the effectiveness of the elastic consis-
tent hashing techniques based on a Sheepdog storage
system. Our solutions significantly outperform the
original consistent hashing based Sheepdog system.

• We analyze real-world traces and confirm that elastic
consistent hashing is able to substantially reduce the
power consumption in many cases.

D1

1.2

1.3

1.1

2.1

2.2

2.3

Data replica Virtual node

D2

D1

1.2

1.3

1.1

2.1

2.2

2.3

3.2
3.3

3.1

Added virtual node

D2

Add server 3

Figure 1: The consistent hashing algorithm

II. BACKGROUND

A. Consistent Hashing

Consistent hashing was first introduced to manage dis-
tributed web cache on the Internet [10]. Since then, it has
been widely used as a data placement algorithm for distributed
storage due to the fact that it does not depend on metadata
servers for managing the mapping between data items (data
item is interchangeable to data object or data block in other
studies) and storage servers, which otherwise can largely limit
the scalability of a distributed storage system. Another benefit
of consistent hashing is that it is able to automatically adapt
to node additions and removals without completely reorga-
nizing data layout. This makes fail-over handling easy and
the storage cluster expansion with minimal intervention. For
example, several large-scale distributed storage systems like
GlusterFS [11] and Sheepdog [12] use consistent hashing as
the data placement algorithm. Consistent hashing uses a hash
ring, a hypothetical data structure that contains a list of hash
values that wraps around at both ends. The ID number of the
buckets/nodes (i.e. the storage servers) are hashed and sorted
to form the hash ring. Given a key (i.e. the data item), it hashes
the key to a position on the hash ring, and continues walking
along the ring in a clockwise direction from that position till
the first bucket/node (also called a successor of the hashed
key) is found, and returns the associated bucket/node for
storing/retrieving the data item. In fact, it usually selects mul-
tiple buckets/nodes along the ring because redundant copies
are usually used in distributed storage systems. In addition,
to improve the balance of the distribution, there are usually
multiple/many virtual nodes generated for a bucket/node to be
placed on the ring. If a virtual node is encountered, the physical
storage server associated with that virtual node is selected to
place the data item.

We use an example to explain how consistent hashing
works (see Figure 1). We assume a cluster with two storage
servers (such a small number is used for easier illustration),
server number 1 and 2. Each server is associated with three
virtual nodes. For example, server 1 has three virtual nodes 1.1,
1.2, and 1.3, where the number before the dot represents the
physical server number and the one after the dot represents the
index of its virtual nodes. To illustrate how consistent hashing
finds the buckets/nodes for a key, a key D1 is considered and
we place two copies (for redundancy and availability) on the
ring. To locate the first bucket/node to place D1, D1 is hashed

to a position on the hash ring, and then walking clockwise from
that position, the next virtual node (a successor) on the ring
is selected for data placement or retrieval, i.e. the virtual node
1.1 in this example. By continuing to walk along the hash ring,
the second replica is placed on virtual node 2.1, or physical
server 2. These steps are shown in the left part of Figure 1.

A great advantage of consistent hashing is that the data
layout does not change significantly when the number of
buckets/nodes (storage servers) changes. When buckets/nodes
are added or removed, the corresponding virtual nodes are
added or removed from the hash ring. The changes to the
virtual nodes on the ring cause a different data placement for
the key if the successor changes, which means a new virtual
node is located by walking clockwise. However, the number
of keys affected is usually small, which makes the adaption
to the node membership changes relatively inexpensive. For
example, we consider adding a server 3 to the cluster as shown
in Figure 1 (right part). Three virtual nodes 3.1, 3.2, and 3.3 are
generated and placed on the hash ring. According to consistent
hashing, the key D1 will find two successor virtual nodes 1.1
and 3.3, instead of 1.1 and 2.1 before. This results that the first
copy of D1 stays at server 1 but the second copy should be
placed on server 3 instead (if D1 already exists in the storage
cluster, i.e. on server 2, before server 3 added, then D1 should
be migrated to server 3 when server 3 added). Notice that a
large portion of keys and data items will stay at their original
locations after server 3 is added. As shown in Figure 1 (right
part), the arc outside the hash ring shows the region that a data
copy hashed in this range will be placed onto the newly added
server. Other than these regions, data copies should still stay
at their original locations.

B. Elastic Storage Systems

The elasticity in distributed storage in the context of this
study refers to the ability to resize the scale of the storage clus-
ter in order to save power consumption and optimize resource
utilization. With elasticity, not only power consumption of a
distributed storage would be proportional to the nodes being
active, the performance should also be proportionally scaled
with the number of active nodes. With a small subset of nodes
being active, a distributed storage system could stay in a low-
power mode for a period of light workloads, which could be a
few hours or even days. Once the workload demand increases,
it can be sized-up accordingly to satisfy the new performance
demand. With fast resizing, a cluster does not need to over-
provision resources all the time to prepare for sudden bursts
of load; instead, it could resize the number of servers in the
cluster to match how much performance is actually needed
from the current load.

The agility of resizing is very important in an elastic
distributed storage. With fast resizing, smaller variations in
the system load can be utilized to reduce machine hours, thus
to decrease power consumption. An elastic storage should also
have minor impact on performance. When resizing a cluster,
the IO footprint should be as small as possible.

C. Motivation of This Research

We have discussed that consistent hashing is able to adapt
to node addition or removal with small data migration. This

0 1 2 3 4 5
Time (minutes)

0

2

4

6

8

10
N

um
be

r o
f s

er
ve

rs

Original Consistent Hashing

Ideal
Consistent hashing

Figure 2: Resizing a consistent hashing based distributed
storage system

0 100 200 300 400 500 600
Time (seconds)

0

50

100

150

200

250

300

350

IO
 th

ro
ug

hp
ut

 (M
B/

s)

Original Consistent Hashing

With resizing
No resizing

Phase 2 endsPhase 1 ends

Figure 3: Performance impact of resizing

makes it naturally elastic, but we argue that the current
consistent hashing based distributed storage does not achieve
adequate elasticity and power-proportionality.

First of all, data objects are distributed across a cluster of
servers randomly and uniformly in consistent hashing. Even
though with data redundancy, removing more than two servers
from the hash ring (powering them off to reduce the power
consumption when light load observed) at the same time would
still make much of data unavailable. When one server leaves
the hash ring, lost data copies have to be re-replicated on the
rest servers. Additionally, before the re-replication finishes,
the consistent hashing based distributed storage is not able
to tolerate another server’s departure. In an elastic distributed
storage, the agility of resizing a cluster is critical. For instance,
sometimes it could require resizing a storage cluster from
1,000 active servers straight to 10. In such cases, the latency
of re-replication would make it very difficult to size down the
cluster so quickly.

We present our observation with an experiment tested
on a 10-server cluster running the consistent hashing based
Sheepdog system [12] (the detailed configuration is discussed
in Section V-A). The resizing capability of the cluster was
tested. In our test, the cluster started with 10 active servers
and we attempted to remove/extract 2 servers every 30 seconds

(even though Sheepdog is not able to do this) for the first 2
minutes, and then at the 3rd minute, we attempted to add 2
servers back every 30 seconds till all 10 servers are active. In
fact, we were not able to make the desired resizing. We had
to remove/extract one server at a time and to allow Sheepdog
to finish its re-replication operation before removing/extracting
the next server. In Figure 2, we can see that Sheepdog lags
behind when sizing down the cluster comparing to the desired
resizing pattern (shown as “ideal” in the figure), but catches
up when sizing up the cluster. We attribute this behavior to
the previously stated problem that the data layout in consistent
hashing based distributed storage prohibits fast resizing. In the
proposed elastic consistent hashing, we use primary server and
equal-work data layout techniques to solve this problem (see
Section III-B and III-C).

The second problem with elasticity in consistent hashing
based distributed storage is the data migration that occurs
when adding servers to a cluster. When servers are added,
certain data objects are due to be moved to the added servers,
which is part of the adaptability feature of consistent hashing
(see Section II-A). This data migration does not affect the
ability of resizing significantly because data migration is not a
pre-requisite operation for adding servers. However, an elastic
distributed storage may resize frequently and introduce con-
siderable data migration that consumes IO bandwidth and de-
grades users’ perceived performance. In order to illustrate the
problem, we conducted a test that used a 3-phase benchmark
(further introduced in Section V-A). As seen from Figure 3,
the first and third phase are IO intensive and the middle
phase is much less IO intensive. In the “no resizing” case,
no servers were turned off all the time, but the “resizing” case
shut down 4 servers when the first phase ended and added
them back when the second phase ended. As shown in this
figure, we can observe that the system’s IO throughput is
significantly affected when we added 4 servers back to the
cluster (between phase 2 and 3). The throughput degradation
was caused by the data migration, which consumed substantial
IO bandwidth. There are two ways the data migration overhead
can be alleviated. First, consistent hashing assumes that the
added servers are empty so that it migrates all the data that
are supposed to place on the added servers. In fact, in an
elastic distributed storage, data on the servers that are turned
down still exist. When they are turned back on, it does not
need to migrate these data back because they are still there,
unless they are modified in the period when these servers
are shut down. Second, the rate of migration operation is
not controlled and it substantially reduces the improvement of
system’s performance that sizing-up a cluster should deliver.
To solve these problems, we design a selective data migration
(we use data re-integration and data migration interchangeably)
policy that reduces the amount of data to migrate and limit the
migration rate (see Section III-E).

III. ELASTIC CONSISTENT HASHING BASED
DISTRIBUTED STORAGE

A. General Design Architecture

The general design of elastic consistent hashing based
distributed storage is inspired by those existing studies such as
SpringFS. It adopts a primary server concept by redesigning
the original consistent hashing: storage servers are divided

1

2
3

5

4

6
7

8

9

Primary server
(always active)

Secondary server
(active)

Secondary server
(inactive)

Data object

D1

D2

1

2
3

5

4

6
7

8

9

D1

D2

10

10

skip inactive

skip secondary

skip primaryskip inactive

Figure 4: The primary server data placement in consistent
hashing based distributed storage. Server 1 and 2 are primaries.
Two servers (server 9 and 10) are inactive secondary servers.
Inactive servers are skipped in the placement. On the left-
side figure, D1 is placed on server 3 and server 1, and D2 is
placed on server 2 and 4. On the right-side figure, the location
of server 10 and 1 on the ring is switched, which results a
different data placement.

into two groups, one group called primaries and the other
group called secondaries. When placing data onto servers, the
primaries always contain exactly one copy of the data, and the
secondaries contain the rest of replicas. This primary server
design ensures that the data will be available (at least one copy)
even with only these primary servers being active. The design
requires modifying the original data placement algorithm in
consistent hashing. We will further discuss the details of the
data placement in elastic consistent hashing in Section III-B.

In elastic consistent hashing algorithm, data layout is a
critical factor that affects the elasticity. Comparing to the orig-
inal consistent hashing algorithm, elastic consistent hashing
algorithm is based on an equal-work data layout that allows
power proportionality and read performance proportionality at
the same time. We will discuss more details about this data
layout in Section III-C.

In addition, we try to alleviate the performance degrada-
tion problem that is observed when sizing up a cluster. By
introducing a selective data re-integration (data re-integration
means the data migration when servers are re-integrated to a
cluster), an elastic consistent hashing based distribtuted storage
is able to achieve better performance in a dynamically resizing
environment. We further discuss the design details of selective
data re-integration in Section III-E.

B. Primary Server Data Placement

Before discussing the primary server data placement, we
introduce server ranks in consistent hashing based distributed
storage. Comparing to the completely symmetric design in
consistent hashing where every server has an equal role in
the storage cluster, the elastic consistent hashing ranks the
servers in the cluster based on the order that servers would
be powered off or on, which is called an expansion-chain in
existing literatures such as [3]. With such ranks, the order
that servers are turned down or on is fixed. With the ranks of

Algorithm 1 Primary server data placement algorithm.
INPUT: Data object ID (Data ID), number of servers (n), number of primary

servers (p), number of replicas (r);
1: /*First replica*/
2: server(1)=next server(hash(Data ID))
3: for i from 2 to r − 1 do
4: if ∃j = 1 to i− 1 that isprimary(server(j)) = TRUE then
5: server(i)=next secondary(hash(server(i− 1)))
6: else
7: server(i)=next server(hash(server(i− 1)))
8: end if
9: end for

10: /*For last replica*/
11: if ∃j = 1 to r − 1 that isprimary(server(j)) = TRUE then
12: server(i)=next secondary(hash(server(i− 1)))
13: else
14: server(i)=next primary(hash(server(i− 1)))
15: end if
OUTPUT: Servers selected for placing replicas of Data ID

servers defined, we illustrate the primary server data placement
as follows.

For a storage cluster with n servers, p servers are selected
as primary servers and the rest of servers are secondary
servers. Primary servers rank from 1 to p. Secondary servers
are assigned a rank number starting p+ 1 to n. With primary
servers, the data placement becomes different from the original
consistent hashing. For placing a data object D onto a n-server
cluster with r − way replication, the goal is to place exactly
one copy on a primary server and the rest copies on secondary
servers.

In order to place exactly one copy of each data item
on primary servers, the elastic consistent hashing uses the
following way to conduct data placement. First, for the first
r−1 replicas of a data item, they are placed according to line
2 to line 9 in Algorithm 1. To place the ith replica, it first
checks if any of the 1st to (i− 1)th replicas is already placed
on a primary server. If yes, the ith replica should be placed
on a secondary server; otherwise it should be placed following
the original consistent hashing, i.e. on the next server along
the hash ring. For the last replica, however, it needs to ensure
that the requirement for placing one copy on a primary server
is met. It checks if any of the previous r−1 replicas is already
assigned to a primary server. If yes, the last replica must be
placed on one of secondaries; otherwise there would be two
copies on primaries. If not, the last replica is placed on one
of primaries (see line 11 to 15 in Algorithm 1).

Notice that there are two cases when a server is skipped
in primary server data placement. The first case is skipping a
primary server when this data item already has a replica on a
primary, and the second case is skipping a secondary server,
which only occurs when placing the last replica.

Figure 4 shows how data placement takes place in a sample
cluster with 10 servers (in which 2 servers are primaries
and 2 servers are inactive secondaries). Note that it shows a
simplified hash ring with no virtual nodes. In fact, there should
be multiple “virtual primary nodes” or “virtual secondary
nodes” for each server. The first copy of the data object D1
in this figure is placed on server 3, which is the next server
encountered on the hash ring. The second copy is placed on
server 1, which is the first primary server next to server 3.

Please note that, in the original consistent hashing algorithm
there is no primary server concept, and the second replica of
D1 would have been placed on server 8. In contrast, for data
object D2, since the first replica is already placed on a primary
server (server 2), the second copy is placed on a secondary
server (server 4).

There is a special case that all secondary servers become
inactive (lowest power state) or the number of active secondary
servers is less than r − 1 (r is the number of data replicas).
In such case, we treat primary servers as secondary servers
temporarily to ensure that the replication level can be still
maintained, as long as there are enough active servers (in-
cluding primary ones) to accommodate r replicas (which is in
fact mostly true because there are usually more primary servers
than the number of replicas).

C. Equal-Work Data Layout

The primary server design makes sure that all data are
still available when resizing to p servers. With a uniform data
distribution, the value of p equals to n

r . For example, for a
10-server cluster with 2-way replication, half of data should
be placed on p = 5 primary servers, and the rest is placed
on the other 5 secondary servers. This significantly limits the
minimum power consumption the elastic consistent hashing is
able to accomplish.

To achieve lower minimal power usage and performance
proportionality, it is necessary to adopt a different data layout
([3]) across the storage cluster so that the IO balancer is able
to achieve optimal proportionality. A promising solution is the
equal-work data layout that was first utilized in Rabbit [3]
for laying out data in HDFS to achieve elasticity. Inspired by
Rabbit, in elastic consistent hashing based distributed storage,
we achieve similar data layout by assigning an appropriate
number of virtual nodes for each server.

We define an equal-work data layout for a storage cluster
with n servers. First, p =

⌈
n
e2

⌉
servers are selected as primaries

(e is Euler’s number; e ≈ 2.7183). For each primary server, the
weight (i.e. the number of virtual nodes) is assigned according
to Equation 1, where B is an integer that is large enough for
data distribution fairness [13]. For a secondary server ranked
i, its weight is defined by Equation 2.

v primary =
B

p
(1)

v secondaryi =
B

i
(2)

This elegant weight design achieves the same equal-work
data layout as in Rabbit [3] and SpringFS [5].

For example, in a 10-server, 2 primary, and 2-way replica-
tion storage cluster depicted in Figure 4 (no virtual nodes in
this figure for simplicity, but in fact, there should be multiple
virtual nodes for each server on the hash ring), the number
of virtual nodes assigned to each server can be calculated
with Equation 1 and 2. Each of these two primary servers is
assigned with 1000/2 = 500 virtual nodes (B = 1000 in this
case). The other servers’ virtual node number is 1000/i, where
i is the rank of the server. For example, server 6 is assigned

1 2 3 4 5 6 7 8 9 10
Rank of server

0

1

2

3

4

5

6

7

8

9

10

N
um

be
r o

f D
at

a
Bl

oc
ks

#104 Data Distribution

Version1 (10 active)
Version2 (8 active)
Version3 (10 active)
Data to migrate

Figure 5: The Equal-Work Data Layout and Data Re-
Integration Between Versions

with 1000/6 = 167 virtual nodes. Note that, in real situations,
a much larger B will be chosen for better load balance.

Figure 5 illustrates a visual view of the equal-work data
layout (see the red solid line). We do not repeat the mathe-
matical derivation to prove that this equal-work layout achieves
the optimal performance proportionality, which has already
been done in literature [3]. But note that higher ranked servers
always store more data comparing to lower ranked servers.

D. Node Capacity Configuration

The primary server data placement and equal-work data
layout deviate from the original consistent hashing’s data lay-
out. One of the major differences is that our proposed schemes
place largely different amount of data on each storage server,
while the original consistent hashing distributes data evenly.
The original consistent hashing uses uniform distribution (via
assigning an equal number of virtual nodes) so that the uti-
lization of storage is maximized (assuming each storage server
has the equal capacity). It means that our proposed schemes
may under-utilize the capacity of some servers (and over-utilize
some other servers) due to the uneven data distribution.

To mitigate this problem, we provide a simple solution that
involves a modified cluster configuration. In this configuration,
we set the capacity of each storage server proportional to
the assigned virtual nodes according to the equal-work data
layout. This would make optimal utilization of the capacity
of each server. However, in a large storage cluster with
many servers, the number of different capacity configurations
needed by the equal-work data layout may be huge, which
is difficult to achieve. In our design, we use only a few
different capacity configurations (for example 2TB, 1.5TB,
1TB, 750GB, 500GB, and 320GB) and each configuration
is assigned to a group of neighboring-ranked servers. This
provides an approximate solution to the data distribution
imbalance problem.

E. Selective Data Re-Integration

With primary server data placement and equal-work data
layout, the elastic consistent hashing is able to achieve a

1

2
3

5

4

6
7

8

9
10

Primary
(always active)

Secondary
(active)

Secondary
(inactive)

Node
1
2

9
10

State
On
On

Off
Off

3 On

OID 10010
Version 9

Membership Table
OID

10
103

20400

Version

9
9

9
10010 9

Dirty Table

1

2

5

4

6
7

8

9
10

Node
1
2

9
10

State
On
On

On
Off

3 On

Membership Table
OID Version

Dirty Table

100
200

8
8

OID 10010
Version 9

OID 10010
Version 10

OID 10010
Version 10

Resizing

Dirty Y

Dirty Y

Dirty Y

Dirty Y

3
obj 10010

Re
-in

te
gr

at
io

n
or

de
r

Re
-in

te
gr

at
io

n
or

de
r

Version 9 Version 10

10
103

20400

9
9

9
10010 9

100
200

8
8

1

2

5

4

6
7

8

9
10

Node
1
2

9
10

State
On
On

On
On

3 On

Membership Table
OID Version

Dirty Table

OID 10010
Version 11

OID 10010
Version 11

All the dirty data in the table till OID 10010
are re-integrated to version 10

Dirty N

Dirty N

3

Version 11

Resizing

102 10
205 10

1010 10

10
103

20400

9
9

9
10010 9

100
200

8
8

102 10
205 10

1010 10

Re
-in

te
gr

at
io

n
or

de
r

obj 10010

obj 10010

Data replica

Figure 6: Dirty data (offloaded data) tracking and selective data re-integration

low minimal power and performance state while maintaining
good power/performance proportionality at the resizing gran-
ularity of one server. However, the performance degradation
associated with resizing can not be solved by these designs.
In elastic consistent hashing based distributed storage, write
availability offloading is used to improve elasticity but it causes
data migration overhead when resizing an elastic cluster.
Write availability offloading occurs when not all servers are
active and it offloads data writes to an inactive server to the
next eligible server so that the replication level can still be
maintained. When data are offloaded this way, the offloaded
data replicas need to be migrated to the desired servers when
those servers are active again. This operation is called re-
integration because it migrates data to re-integrated servers and
recovers the equal-work data layout. For example, in Figure 5,
the cluster undergoes three versions (version is defined later,
but we can consider it as a state of the cluster for now) that it
sizes down from 10 active servers to 8 active servers, and sizes
up back to 10 active servers again. We assume that 50,000 data
objects are written in version 2, which somehow distorts the
curve of data layout because the last two servers are inactive.
In version 3, the data layout should recover and the amount
of data shown in shaded area should be re-integrated.

The experiment in Section II-C shows that consistent
hashing based storage is not able to identify offloaded data
but instead over-migrates all the data based on changed data
layout. It is also shown that data re-integration consumes con-
siderable IO bandwidth for an extended period and deteriorates
the performance scaling significantly. These two problems at-
tribute to the performance degradation when resizing a cluster.
To alleviate the impact of data re-integration, we introduce
techniques to track offloaded data and limit the rate of data
migration.

1) Cluster Membership Versioning: To enable locating data
in a cluster that resizes frequently, it is necessary to maintain

versions of the cluster being in different resizing states. Most
of consistent hashing based distributed storage systems, as
far as we know, includes membership version as an essential
component. For example, Ceph, GluterFS, and Sheepdog, use
version (sometimes called epoch in these systems) to ensure
the data consistency when node membership changes. We
define a data structure membership table to keep the state of
each server in the cluster in a certain version, where a server in
the cluster can be either on or off. Each version is associated
with a membership table structure to describe the state of each
server in that version. With versions of a cluster maintained, it
is able to identify where data replicas are written in a historical
version, no matter how many versions have passed. Given a
data object ID, as long as the last version it is written is known,
it is able to accurately find the servers that contain the latest
replicas of the data.

2) Tracking Dirty Data: We also introduce a dirty table
to facilitate selective data re-integration, in which only “dirty
data” are re-integrated. “Dirty data” refers to the data written
in a cluster in a certain version that is not in full-power state
(all servers are active). When placing replicas of these data,
some of the replicas may be offloaded from inactive servers to
other active servers. When the cluster is in a new version that
contains more active servers, these “dirty” data might need to
be re-integrated to those servers that they are offloaded from.
A data object in elastic consistent hashing is considered dirty
until it has been re-integrated to a full-power version, in which
replicas will not skip any inactive server during placement.

Each entry of the dirty table contains the data object ID
(OID) that is a universal identifier of a data object, and a
version number that specifies the version this data object is
lastly written. In addition, a version number and a dirty bit are
also added to the header of data objects (actually the Sheepdog
distributed storage we used for evaluation already includes a
version in the header). These two entries allow the data re-

Algorithm 2 Selective data re-integration.
INPUT: Current version (Curr Ver), number of servers (n), number of

replicas (r), running status either RUNNING or PAUSED (state);
1: while isempty dirty table()=FALSE and state=RUNNING do
2: if Curr V er > Last V er then
3: restart dirty entry()
4: end if
5: (OID, V er)=fetch dirty entry()
6: if num ser(Curr V er) > num ser(V er) then
7: to ser[1...r]=locate ser(OID,Curr V er)
8: from ser[1...r]=locate ser(OID, V er)
9: migrate(from ser, to ser)

10: Last V er = Curr V er
11: if num ser(Curr V er)==n then
12: remove dirty entry(OID)
13: end if
14: end if
15: end while

integration component to identify the newest version of data
so that when a data object is written in multiple versions, the
data re-integration component is able to identify the latest data
version and avoids stale data. Whenever a dirty data is written,
the corresponding OID and version are inserted into the dirty
table. The dirty table is managed as a FIFO list, which means
that the oldest entries in the table are fetched before newer
ones. The dirty table is maintained in a distributed key-value
store across the storage servers to balance the storage usage
and the lookup load. A logging component tracks data object
written in the distributed storage and inserts key-value pairs
according to the data object ID and current cluster version.

3) Selective Data Re-integration: In this subsection, we
describe how to perform selective data re-integration utiliz-
ing the versioning and dirty table data structures described
above. The selective data re-integration process is described
in Algorithm 2. First, it checks if the current version differs
from the version that last data re-integration takes place. If
yes, it means that the cluster is in a new version that the data
re-integration should restart from the first entry in the dirty
table, forgeting the current progress (line 2 in Algorithm 2).
Then it fetches an entry from dirty table, starting from older
versions to newer version (line 3 in Algorithm 2). Please
note that the function fetch dirty entry always fetches data
in the dirty table in a certain order (version ascending and
OID ascending if the version is the same). The fetched OID
and version are used to locate the data to be re-integrated.
Note that re-integration only occurs when the current version
has more active servers comparing to the version of the data
(see line 4 in Algorithm 2). The version number can be used
to find the corresponding membership table to determine the
cluster membership at that certain version. According to the
cluster membership, the location of existing data replicas can
be calculated and the servers that they should be migrated
to can be inferred as well (see line 5 to 6 in Algorithm 2).
Once the location of the candidate data object is determined,
the data re-integration component is able to migrate it to the
desired servers in accordance with the current version (line 7
in Algorithm 2). After a data object is re-integrated, it further
checks if the current version is a full-power version (all servers
are active), and if yes, it removes all the entries in the dirty
table (line 8 in Algorithm 2).

With the selective data re-integration algorithm described

above, only the offloaded data are migrated when servers are
re-integrated. It reduces the amount of data migration needed
in such situations.

Figure 6 illustrates an example of a cluster in three ver-
sions. In each version, we show the membership table and
dirty table in that state. In version 9, only server 1 to 5 are
active, which means that all the data written in this version
are dirty. We assume that 4 data objects, 10, 103, 10010,
and 20400 are written in this version. The dirty data entries
are inserted in the dirty table along with entries inserted at
version 8. Taking data object 10010 for example, it is placed
on server 4 and 1 according to the placement algorithm defined
in Section III-B. When the cluster is resized to version 10 by
turning on 4 servers, a new version with more active servers
appears so that data re-integration starts. It follows the pre-
defined order to migrate data. For example, one replica of
object 10010 is migrated from server 4 to 9 in this case. It
is noted because version 10 is not a full-power version, the
entries in the dirty table are not removed after re-integration
is finished. In version 11, however, all the servers are active
so that all the data recorded in the dirty table should be re-
integrated to this version. In the state shown in the figure,
all the dirty data until 10010 have been re-integrated and the
corresponding entries are removed from the table. One copy
of object 10010 is also migrated from server 9 to server 10.

IV. IMPLEMENTATION

The elastic consistent hashing design and techniques are
evaluated based on Sheepdog distributed storage system.
Sheepdog is an object-based storage [14], and each data object
is distributed to a cluster of storage servers via the consistent
hashing algorithm. When the cluster membership changes
(servers may leave and join a Sheepdog cluster), Sheepdog
automatically recovers data layout based on the consistent
hashing algorithm. The recovery feature of Sheepdog is mainly
utilized for tolerating failures or expanding the cluster size,
but not for elasticity. In our implementation, the servers in the
cluster never leave the cluster when they are turned down, but
are in the inactive state. The core data placement algorithm
in Sheepdog is modified to execute the primary server data
placement described in Section III-B (Source code 1, and the
weight of each server is set based on the equal-work data
layout described in Section III-C.

For tracking dirty data, we use Redis [15], an in-memory
key-value store, for managing the dirty table. The dirty table
is managed using the LIST data type in Redis. Each dirty
data entry is inserted using RPUSH command. During re-
integration, if an entry in the dirty table is used for migrating its
corresponding data replicas but is not removed from the table
afterward (when current version is not a full-power version),
a LRANGE command is used to fetch the (OID, version)
pair from the store. Otherwise, if the entry should be removed
after migration, a LPOP command is used instead to remove
the (OID, version) pair from the store. The selective data
re-integration component uses the algorithm described in Sec-
tion III-E.

1http://discl.cs.ttu.edu/gitlab/xiewei/ElasticConsistentHashing

0 100 200 300 400 500 600
Time (seconds)

0

50

100

150

200

250

300

350

IO
 th

ro
ug

hp
ut

 (M
B/

s)

Selective
Original CH
No-resizing

Phase 1 ends Phase 2 ends

Resize delayed

Figure 7: Evaluating the performance of resizing with 3-phase
workload.

V. EVALUATION AND ANALYSIS

A. A Cluster Testbed Evaluation with 3-Phase Workload

We have set up a cluster testbed based on our modified
Sheepdog system and used a 3-phase workload to test how the
elastic consistent hashing performs when resizing the cluster
size and compares it against the case without resizing. The
modified Sheepdog system was deployed on a 10-node storage
cluster. Each of these 10 servers is equipped with 2 Intel(R)
Xeon(R) CPU E5-2450, 32GB RAM, 500GB hard disk drive,
and connected via the 10 Gigabit Ethernet. It is noted that we
do not use different capacity configuration for different nodes
due to the limited hardware availability. Because we do not test
our system to the extreme capacity, such configuration does
not cause the problem of node being full. Modified sheepdog
processes ran on these 10 servers, providing an aggregated
block-level store. It used a 2-way data replication, and data
object size is 4MB. A 100GB space was partitioned from
this store and assigned to a KVM-QEMU virtual machine as
a virtual disk. The KVM-QEMU virtual machine ran on a
separate client server with the same configuration as storage
servers, configured with 2 virtual CPUs and 16GB of virtual
RAM.

We generated synthetic benchmarks using Filebench to
mimic the 3-phase benchmark used in a previous work [5]. In
the first phase, we used Filebench to sequentially write 2GB
of data to 7 files, with a total of 14GB data. The second phase
benchmark, however, is much less IO intensive. We used rate
attribute in Filebench to limit the IO event issued per second
so that the I/O throughput in the middle phase was 20MB/s.
In this phase, there were totally 4.2GB data read and 8.4GB
data written. The last phase is similar to the first phase, except
that the write ratio was 20%. The configurations were set to
resemble the 3-phase workload used in SpringFS [5]. The first
phase of the workload ran in full-power mode with all 10
servers turned on. At the end of the first phase, 4 servers were
turned down until the end of the second phase. All the servers
were back on in the third phase benchmark.

In our test, we evaluated three cases (see Figure 7): a
system without resizing (“no resizing” in the figure), original
consistent hashing (“original CH” in the figure), and con-

sistent hashing with selective data re-integration (“selective”
in the figure). Note that primary server and data layout are
not considered here because they do not have an effect on
the performance. From Figure 7, we can see that the I/O
throughput in selective data re-integration is substantially faster
comparing to the original consistent hashing algorithm when
phase 2 workload ends. It indicates that our selective re-
integration technique successfully reduces the data that need
to be migrated and thus allow more I/O throughput for the
testing workload.

The evaluation result illustrates the performance degrada-
tion due to data re-integration we have discussed in the paper.
Even though there is little difference in the peak IO throughput
in the three cases, the “delayed” IO throughput increase has a
big impact on the elasticity of the system. When IO throughput
is needed (look at where phase 2 ends in the figure), the
data re-integration work makes the original consistent hashing
based store struggle to deliver the performance. In a real elastic
system, it would need to power on much more servers to satisfy
the IO throughput requirement at this period. With improve-
ment on the “delayed” IO throughput, it requires powering on
less servers to make up the IO bandwidth consumed by data
re-integration. This is how our evaluation result translates to
saving machine hours.

B. Policy Analysis with Real-world Traces

The evaluation in Section V-A tests the performance varia-
tion when the distributed storage is resized. It is a small-scale
test due to the limited resources available and evaluated using
synthetic benchmark. In this Section, we analyze real-world
traces from large-scale distributed storage and demonstrate
the benefit of the elasticity behavior of the elastic consistent
hashing and the selective data re-integration. We used two
Cloudera traces (there are totally 5 of these traces but we do not
have enough page space to show all of them) from Cloudera’s
enterprise customers’ Hadoop deployments running various e-
commerce and telecommunication applications, which is ini-
tially discussed in [16]. The characteristics of these two traces
are described in Table I. These traces contain the I/O load on
the storage cluster over a long period of time (several days to
a month). The ideal number of servers for each time period
is proportional to the data size processed. However, according
to our observation, real system is not able to achieve such
ideal scaling. Scaling down in the original consistent hashing
store may require delay time for migrating data. Scaling up
in both original and our modified consistent hashing store
may also require processing extra IOs for data reintegration,
which increases the number of servers needed. We calculate
the delay time and extra IOs according to the trace data and
deduce the number of servers needed for three cases: “Original
CH”, “Primary+full”, and ‘Primary+selective”. “Original CH”
is the original consistent hashing with uniform data layout that
no primary server design nor selective re-integration is used,
in which much clean up work must be done before resizing.
“Primary+full” uses the elastic consistent hashing with primary
server and equal-work data layout, but does not turn on the
selective data re-integration component. “Primary+selective”
also uses the elastic consistent hashing and with selective data
re-integration component turned on.

In both of these two figures (Figure 8 and Figure 9),

Table I: The specification of the real-world traces

Trace Machines Length Bytes processed
CC-a <100 1 month 69TB
CC-b 300 9 days 473TB

0 50 100 150 200 250
Time (minutes)

0

10

20

30

40

50

N
um

be
r o

f s
er

ve
rs

CC-a Trace

Ideal
Original CH
Primary+full
Primary+selective

Figure 8: CC-a Trace. “Ideal” case is fully based on the profil-
ing of the IO throughput in the trace. The original consistent
hashing (“original CH”) needs clean-up work before resizing
thus exhibit delays in resizing. Primary server placement
“primary” does not require clean-up work when resizing and
introduce small IO performance impact. It resizes near ideally
except that it is not able to size down further until there are
only primary servers.

it is clear to see that “primary+selective” outperforms “pri-
mary+full” and “original CH” significantly, especially when
sizing down the cluster quickly. “Primary+selective” performs
very close to the “ideal” case except that it is not able to work
below the minimum number of servers, which is defined by
the equal-work data layout.

0 50 100 150 200 250
Time (minutes)

0

20

40

60

80

100

120

140

160

180

N
um

be
r o

f s
er

ve
rs

CC-b Trace

Ideal
Original CH
Primary+full
Primary+selective

Figure 9: CC-b Trace

Table II: Relative machine hour usage relative to the ideal case

Trace Original CH Primary+full Primary+selective
CC-a 1.32 1.24 1.21
CC-b 1.51 1.37 1.33

In addition, “primary+full” still provides significant im-
provement comparing to the “original CH”, which means that
the primary server design and the equal-work data layout
attribute to a portion of the better elasticity. For CC-a traces,
we find that “primary+full” saves 6.3% machines hours and
“primary+selective” saves 8.5% machines hours comparing
to the “original CH” case. Comparing to the “Ideal” case,
“primary+selective” only has 1.21 times more machine hour
usage. For CC-b traces,“primary+full” saves 9.3% machines
hours and “primary+selective” saves 12.1% machines hours
comparing to the “original CH” case. Comparing to the “Ideal”
case, “primary+selective” only has 1.33 times more machine
hour usage. (see Table II). These results indicate that our
primary server data placement achieves good resizing agility
no matter whether the data re-integration technique is used or
not. The selective data re-integration also manages to save a
little machine hour. We believe that this is because in some
situations the IO load from full data re-integration could pre-
vent the cluster from sizing down for some period. However,
this only occurs at extreme situations where the cluster resizes
abruptly and data re-integration work has no time to catch
up. In addition, we can see that CC-a trace has significantly
higher resizing frequency. It explains why our techniques are
able to achieve more percentage of improvement comparing to
the original consistent hashing.

VI. RELATED WORK

Some recent studies [2]–[5] tried to address the elasticity
problem by providing new data layout and some other tech-
niques in distributed storage systems. The most notable tech-
nique of achieving elasticity is called “primary servers” used
in Rabbit [3], Sierra [2], and SpringFS [5]. Rabbit proposes
an equal-work data layout to achieve a much smaller system
size (around 10% of cluster size) and optimal performance
proportionality. These studies inspired us to accomplish a
similar design in consistent hashing based distributed storage
to achieve better elasticity.

Even though these studies provide systematic solutions for
elastic distributed storage, the techniques discussed in them
are not able to be adapted in consistent hashing based storage
trivially. In this research, we not only adapt some of their
techniques into consistent hashing based storage and also
propose new techniques to enable selective data re-integration
policy to improve performance and elasticity.

A recent study GreenCHT [17] targets similar problem as
we do. In GreenCHT, servers are partitioned into different
tiers that each tier of servers can be turned down together to
save power. GreenCHT is also integrated with a power mode
scheduler to dynamically adjust power mode of the system.
Comparing to GreenCHT, our elastic consistent hashing is
able to achieve finer granularity of resizing with one server as
the smallest resizing unit. In addition, we have systematically
discussed how primary server, equal-work data layout, and

selective data re-integration work in consistent hashing based
storage that GreenCHT lacks.

There are also numerous studies focusing on the determin-
ing how to resize resource provisioning in cloud infrastructure.
AutoScale proposes a dynamic capacity management approach
to maintain the right amount of spare capacity to handle
bursts in requests. Lim et al. [1] designed an elasticity-aware
resource management controller to resize a cluster according
to demands with short delays. Elastisizer [18] tries to compute
an optimal cluster size for a specific MapReduce job with job
profiling and modeling. The SCADS director framework [19]
uses a model-predictive control (MPC) framework to make
cluster sizing decisions based on the current workload state,
current data layout, and predicted SLO violation. AGILE [20]
predicts medium-term resource demand to add servers ahead
of time in order to avoid the latency of resizing. Our elastic
consistent hashing based distributed storage solves the problem
of how to resize a distributed storage quickly, without affecting
the performance much, but does not discuss the problem of
how to make resizing decision based on workload demands.
These previous studies can be integrated with elastic consistent
hashing to provide a more attractive solution.

Other than achieving elasticity, it is also critical to improve
the performance of distributed data store. Our previous work
proposed distributed hybrid storage for consistent hashing
based data store [13], [21]. These work attempt to achieve a
unified distributed data store to combine distributed SSD and
HDD devices [22] and provide balance between performance
and storage utilization. Liu et al. [23] uses a result reusing
technique to reduce data movement in scientific analytic ap-
plications. These studies are orthogonal to our elastic storage
research to improve the distributed data store.

VII. CONCLUDING REMARKS

In this study, we carefully examine the elasticity in consis-
tent hashing based storage systems and find that even though
consistent hashing is designed to be easily adaptable to server
addition and removal, it is not elastic. To enable an elastic
consistent hashing based storage, we propose three techniques
including primary server, equal-work data layout, and selective
data re-integration. We present how primary server and equal-
work data layout are designed and how they avoid clean-up
work when sizing down a cluster and achieves low minimum
power consumption. A selective data re-integration technique
is introduced to reduce data migration work and alleviate the
performance degradation problem when resizing a cluster. Our
proof-of-concept implementation and testing have confirmed
the effectiveness of the elastic consistent hashing in terms of
the ability of agile resizing and low performance impact.

Metadata based distributed storage systems have encoun-
tered scalability bottleneck in recent years due to the demand
for very large-scale storage systems. Consistent hashing based
distributed storage systems are considered an option to address
this problem. Meantime, the elasticity has become increasingly
critical for a large-scale storage system. Our study attempts to
lay the foundation of allowing better elasticity in this type of
distributed storage system. We will continue to work on these
issues and try to solve other problems in this area, such as a
resizing policy based on workload profiling and prediction.

As a future work, we consider the overhead of managing
dirty data table in the key-value store, which introduces mem-
ory footprint and latency to manage such data structure. We
have not carefully evaluated the overhead yet but we believe
the performance of state-of-the-art key-value store is able to
make the overhead minor.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation under grant CNS-1162488, CNS-1338078, and
CCF-1409946.

REFERENCES

[1] H. C. Lim, S. Babu, and J. S. Chase, “Automated Control for Elastic Storage,”
ser. ICAC ’10, 2010.

[2] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: Practical Power-
proportionality for Data Center Storage,” ser. EuroSys ’11, 2011.

[3] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan, ser.
SoCC ’10, 2010.

[4] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. Rowstron, “Everest:
Scaling Down Peak Loads Through I/O Off-loading,” ser. OSDI’08, 2008.

[5] L. Xu, J. Cipar, E. Krevat, A. Tumanov, N. Gupta, M. A. Kozuch, and
G. R. Ganger, “SpringFS: bridging agility and performance in elastic distributed
storage,” in Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST 14), 2014.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed
File System,” in Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), ser. MSST ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 1–10.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area
Cooperative Storage with CFS,” ser. SOSP ’01, 2001.

[8] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, “Ceph: A
Scalable, High-performance Distributed File System,” in Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, ser. OSDI ’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 307–320.

[9] A. Lakshman and P. Malik, “Cassandra: A Decentralized Structured Storage
System,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr. 2010.

[10] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,
“Consistent Hashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web,” in Proceedings of the Twenty-
ninth Annual ACM Symposium on Theory of Computing, ser. STOC ’97, 1997.

[11] A. Davies and A. Orsaria, “Scale out with GlusterFS,” Linux J., 2013.
[12] “Sheepdog project,” https://sheepdog.github.io/sheepdog/, accessed: 2015-07-08.
[13] W. Xie, J. Zhou, M. Reyes, J. Noble, and Y. Chen, “Two-mode data distribution

scheme for heterogeneous storage in data centers,” in Big Data (Big Data), 2015
IEEE International Conference on. IEEE, 2015, pp. 327–332.

[14] M. Mesnier, G. R. Ganger, and E. Riedel, “Object-based storage,” IEEE Commu-
nications Magazine, 2003.

[15] J. L. Carlson, Redis in Action. Manning Publications Co., 2013.
[16] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in big data

systems: A cross-industry study of mapreduce workloads,” Proceedings of the
VLDB Endowment, 2012.

[17] N. Zhao, J. Wan, J. Wang, and C. Xie, “GreenCHT: A power-proportional
replication scheme for consistent hashing based key value storage systems,” in
2015 31st Symposium on Mass Storage Systems and Technologies (MSST), 2015.

[18] H. Herodotou, F. Dong, and S. Babu, “No One (Cluster) Size Fits All: Automatic
Cluster Sizing for Data-intensive Analytics,” in Proceedings of the 2Nd ACM
Symposium on Cloud Computing, ser. SOCC ’11, 2011.

[19] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patter-
son, “The SCADS Director: Scaling a Distributed Storage System Under Stringent
Performance Requirements,” in Proceedings of the 9th USENIX Conference on
File and Stroage Technologies, ser. FAST’11.

[20] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic distributed
resource scaling for infrastructure-as-a-service,” in ICAC 13, 2013.

[21] J. Zhou, W. Xie, J. Noble, K. Echo, and Y. Chen, “SUORA: A Scalable and
Uniform Data Distribution Algorithm for Heterogeneous Storage Systems,” in
Proceedings of the 11th IEEE International Conference on Networking, Architec-
ture, and Storage, 2016.

[22] W. Xie, Y. Chen, and P. C. Roth, “ASA-FTL: An Adaptive Separation Aware
Flash Translation Layer for Solid State Drives,” Parallel Computing, 2016.

[23] J. Liu, S. Byna, and Y. Chen, “Segmented Analysis for Reducing Data Movement.”
in In the Proc. of the IEEE International Conference on Big Data,(Bigdata’13),
2013.

