
I/O Characteristics Discovery in Cloud Storage Systems

Jiang Zhou, Dong Dai, Yu Mao, Xin Chen, Yu Zhuang, and Yong Chen

Department of Computer Science, Texas Tech University, USA

Abstract—The data growth from many applications in clouds
poses significant challenges to cloud storage systems. To deliver
the best storage and I/O performance possible, it is often
required to understand and leverage the I/O characteristics
based on data accesses. A number of research studies have been
carried out on this topic. However, most of them either utilize
a limited number of data-access attributes, restricting the
general applicability of the method for different applications,
or heavily rely on the domain knowledge or expertise about
applications’ I/O behaviors to select the best representative
features, introducing bias for certain workloads. To over-
come these limitations, in this study, we present a new I/O
characteristic discovery methodology. This method enables
capturing data-access features as many as possible to eliminate
human bias. It utilizes a machine-learning based strategy to
derive the most important set of features automatically, and
groups data objects with a clustering algorithm (DBSCAN) to
reveal I/O characteristics discovered. These I/O characteristics
revealed can direct I/O performance optimizations in numerous
scenarios, such as in data prefeteching and data reorganization
optimizations in cloud storage systems.

Keywords-Cloud storage systems, file systems, I/O character-
istics discovery

I. INTRODUCTION

The ever-increasing data demand in many science and

engineering domains and applications has posed significant

challenges to cloud computing systems. To achieve highly

optimized data-access performance of cloud storage systems

understanding and leveraging data-access patterns have been

proven effective in I/O optimization [1].

Arguably, the better the access pattern is understood, the

better the storage and cloud system can be tuned. As a

result, numerous studies have been conducted to identify,

characterize, and leverage data-access patterns. There are

two typical methods to analyze and discover I/O characteris-

tics. One is to analyze spatial/temporal behaviors to identify

I/O access sequence [2–6]. The other method is to analyze

semantic information such as the access correlations between

blocks/objects by mining I/O semantic attributes, which

can potentially discover more complex patterns, especially

semantic patterns [7–11]. While existing studies show the

feasibility of I/O characteristics discovery through various

approaches, they have two shortcomings as discussed below,

which also motivates this research.

First, many of these approaches are limited to specific and

predefined features. A feature refers to an attribute of a data

access. For example, the object ID of an object access is a

feature; the data access size is another feature. Many existing

studies investigate one or more rather specific, predefined

features to analyze access patterns. The resulting insights,

although valuable, often lead to an incomplete view of

access patterns. For example, object ID and access time help

obtain temporal I/O behavior, but, if access length and offset

are considered, spatial correlation of data accesses can be

further derived. In general, more features indicate more I/O

behaviors, i.e., read/write operation code reveals read/write

types and target node ID provides object location. Given the

increasing complexity of I/O behaviors, it is inadequate to

attempt to discover I/O characteristics with only specific or

predefined features. It is critical to analyze abundant features

thoroughly for I/O characteristics discovery.

Second, existing approaches often introduce bias. Clearly,

treating all features equally is not accurate because dis-

tinct features can have significantly different impacts on

I/O characterization. However, selecting the desired set of

features is often daunting and introduces bias, which requires

domain knowledge and assumptions about storage systems

and applications. Besides, we will not know whether we

have a good set of features until we have completed the

entire analysis process. For example, in study [7], the authors

presented an iterative process to initially select some basic

features, e.g., total I/O size and read-write ratio for a file,

and then add new features if the analysis results leave some

system design choice ambiguous. They still need to interpret

the output results and derive access patterns by looking at

only the relevant subset of features, again using domain

knowledge. Moreover, the system may exhibit various data-

access patterns for a given application. For example, the

scientific computing applications in study [12] show various

data-access patterns for massive data processing. Identifying

representative features manually would not adapt to this

scenario, and may lead to an untenable analysis. This largely

limits the efficiency of using access patterns for tuning the

system and optimizing the performance.

In this paper, we present a new design methodology to

overcome these shortcomings of existing methods discussed

above. Specifically, we propose to capture features of data

accesses as many as possible (more than 20 in our test

cases), including features like object ID, access time, target

node, and others we can collect, to generalize data-access

pattern discovery for various applications. Based on the rich

set of features, we use access correlations among objects

to identify different patterns. We utilize machine-learning

based strategy (principal component analysis [13]) to find

170

2018 IEEE 11th International Conference on Cloud Computing

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00029



the most important “key features” automatically among all

collected features in an unsupervised way. This eliminates

the bias from users or domain knowledge requires for

applications, and provides an automatic, extensible way to

identify the dominant data-access patterns. Based on the

learned key features, we apply a clustering algorithm (i.e.,

DBSCAN) to mine the objects’ I/O similarity, particularly

“key feature correlations”, and group highly relevant object

IDs, which can be leveraged to improve the I/O performance.

The key contributions of this study are three-fold:

• Propose a new I/O characteristics and data-access pat-

tern discovery strategy based on a large number of

collectable features of I/O accesses.

• Utilize machine-learning based strategy to identify key

features and to cluster objects into highly correlated

groups for I/O optimizations.

• Conduct various experimental evaluations to validate

the proposed I/O characterization methodology.

II. RELATED WORK

A number of tools have been developed to profile and

trace I/O activities, such as Darshan [14], LANL-Trace [15],

RIOT I/O [16], etc. Existing tools record I/O behaviors

for user applications. However, most of them focus on the

collection of I/O statistical information without providing

effective ways to understand data-access patterns.

There is a rich set of literature on the topic of I/O features

analysis and pattern discovery. These approaches mainly

focus on two categories: I/O access sequence analysis and

I/O semantic attribute analysis. The I/O sequence analysis is

based on various parameters of data accesses, including spa-

tial locality, temporal sequence, and repeating operations [2–

6]. However, these analyses were performed to look for the

periodicity of an application’s I/O behavior based on prior

workload expectations. It lacks of consideration on analyzing

the I/O behaviors that have no knowledge to assume any

application to possesses certain patterns.

On the other hand, by extracting semantic attributes

from file systems, semantic attribute mining approaches can

analyze more complex I/O patterns and get the correlations

among data accesses, such as C-Miner [9], Farmer [8]

Block2Vec [17], and many others [7, 10, 11]. Although

these methods look at trace for I/O characteristics discovery,

they perform the pattern analysis with only one or few

specific features at a time. Chen et al. [7] proposed a multi-

dimensional, statistical correlation trace analysis with K-

means data clustering algorithm to identify access patterns.

It can obtain comprehensive data access behavior, but require

domain knowledge for selecting the set of descriptive and in-

terpret the output results. Different from them, we introduces

the principal component concept to automatically select key

features from a vast number of access features. It reduces the

bias introduced by domain knowledge or priori information

of the applications. In addition, we also utilize DBSCAN,

a multi-dimensional statistical data clustering algorithm to

analyze I/O similarity and dynamically adjust the distance

threshold for clustering. It can identify groups of highly

similar I/O accesses without any assumption the number or

shape of result clusters and achieve I/O characterization.

With the analysis on data-access patterns, the storage

sources can be better leveraged to boost the performance

of applications. It has motivated various I/O optimizations

including prefetching [6], data layout [8], and scheduling

techniques [18]. Model-based algorithms, such as using

neural network [3], Markov models [19], grammar-based

model [5] and so on [20], have been studied and proven their

efficiency for prefetching in many cases. However, existing

preftching strategies mainly focus on spatial/temporal I/O

behaviors or specific access features to prefetch future

data and achieve performance optimization. On contrast,

We address the limitations of current prediction systems

for data accesses with high I/O similarity. We use PCA-

based method and data clustering algorithm to analyze key

feature correlations among objects from I/O behavior. These

correlations and characterizations discovered can be used to

optimize systems.

III. I/O TRACE IN STORAGE SYSTEMS

In most storage models, applications access data files

through the POSIX interface. Under such model, three I/O

software stack layers can be identified [14, 21]. The top

layer runs on compute nodes (i.e., clients) within user appli-

cations, where the I/O accesses are issued from. The second

layer includes both the client-side file system libraries and

runtime supports. The storage system needs to implement

the functions of file read and write operations to support the

POSIX interface. Data accesses will be mapped to storage

objects in this layer. At the third layer, these mapped object

requests will be dispatched to different storage nodes for

accessing data.

Data accesses can be traced at any I/O stack layer. For

example, Darshan [22] collects I/O trace statistics at the first

layer via instrumenting I/O calls made by applications. In

this study, we focus on tracing accesses at the third layer,

i.e., on the storage nodes (server-side). There are two reasons

for this design decision. First, all first- and second-layer I/O

behaviors will be ultimately turned into accesses at the third

layer. I/O accesses can be fully collected through tracing

on the server side. Second, tracing server-side accesses does

not assume any domain knowledge or priori information of

applications, which is critical to support a system-level I/O

characteristics discovery methodology.

We focus on a distributed object-based storage system,

Sheepdog, which follows a decentralized design. I/O re-

quests are directly sent to the storage nodes (e.g., via a

consistent hashing algorithm [23]). Specifically, we trace

data accesses in Sheepdog via gateway nodes that receive

or forward all I/O requests, and use them to design and

171



I/O trace file (Section III)

Formatting The 

Training Set

timestamp object id length offset opcode

14755…9655 55620…1025 81920 462848 2

14755…8067 55620…1031 16384 3035136 2

14755…8387 55620…1032 8192 2572288 1
. . . . .

reqid

1

0

2
.

index

0

1

2
.

refcount

1

1

2
.

zone

0

1

0
.

target node

248

247

244
.

.

.

.

.

.

.

-2.5954 -0.9095 -0.9158 -0.6964 -1.6036

-2.5950 -0.9087 -0.9604 1.1055 -1.6036

-2.5948 -0.9087 -0.9660 0.7813 -1.6037
. . . . .

-0.0038

-1.3727

1.9201
.

-0.0041

-1.3810

-1.3725
.

-1.1863

-1.1863

-1.0672
.

-0.0036

2.9627

-0.0036
.

.

.

.

..

.

Feature normalization (Section IV-A)

PCA-based key features 

learning (Section IV-B)

Key features selection (e.g., the 

first four important principal 

components) and 

dimensionality reduction

DBSCAN-based 

data accesses clustering 

(Section IV-C, D)

Group highly relevant object IDs by 

mining objects’ I/O similarity, 

particularly key features correlation 

Results after applying PCA (Section IV-B)

5.5755 -0.0753 1.0242 0.6727 -0.2181

5.5752 -0.0752 1.0245 0.6720 -0.2180

8.9861 0.1025 -2.9243 -1.3178 0.3612
. . . . .

0.7744

0.7746

-2.129
.

0.1016

-0.2108

-0.1502
.

1.0250

-1.9954

-0.4318
.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

Figure 1: Overview of I/O characteristics discovery (the real trace data and features are collected on Sheepdog)

implement the server-side object access tracing mechanism.

By analyzing I/O trace on gateway nodes, I/O characteristics

can be mined for the entire storage system.

IV. I/O CHARACTERISTICS DISCOVERY

In this section, we introduce the design and implementa-

tion of the proposed I/O characteristics discovery method-

ology. Figure 1 shows an overview of this method. It

begins with a stream of I/O traces, which can be collected

periodically based on data accesses of cloud storage systems.

Each line/record in the trace file indicates one object access

with various features. Figure 1 illustrates part of the real

trace data and features we have collected from Sheepdog. In

this specific example, due to the space limit, we show the

following features: 1) access time, 2) object ID, 3) access

length, 4) access offset, 5) operation code, 6) request ID, 7)

object index, 8) object reference count, 9) zone (one object

copy per zone), and 10) target node ID. The trace data will

be pre-processed for feature normalization and formatted

to training datasets. These training datasets are then used

by PCA (principal component analysis) module [13] to

derive key features (i.e., the important, principal features)

from their original features. Each feature represents one

dimension describing an attribute of data accesses. Learning

key features is essentially the process of dimensionality

reduction. Utilizing key features and training datasets, a

DBSCAN-based clustering algorithm [24] is used to group

relevant objects by calculating the correlation of key fea-

tures. Based on these I/O characterization results, storage

systems can be tuned and optimized for better performance.

We will describe the feature normalization, learning key

features, clustering, and discuss the efficacy in this section.

A. Feature Normalization

To discover I/O characteristics, traces need to go through

a feature normalization pre-processing stage to lay out a

foundation for the comparison and key feature selection. The

reason is that, in I/O traces, features have values in different

units. For example, in Figure 1, the access time feature is a

64-bit integer in milliseconds, while the access offset feature

is a 32-bit integer in bytes. Such a large range of values

make it difficult to compare different features and identify

their importance. To solve this issue, feature normalization

is performed to reduce the range and variance of different

feature values. Further, these features with same values are

ignored because they do not help distinguish I/O behaviors.

In the current study, we also do not consider features that

are not in numerical values.

There are many data normalization methods, such as

min-max, z-score and decimal scaling normalization meth-

ods [25]. We use the z-score method for feature normal-

ization as the trials of these methods confirm the z-score

delivers the best promise to reduce the value variance across

different features and remove outliers [25]. The z-score

method subtracts the mean from each feature and further

divides it by its standard deviation. It transforms the data

set to a distribution with zero mean and unit variance. The

conversion function for feature normalization of each data

access is described as:

z =
x− µ

σ
(1)

where x is one value of the feature (e.g., 81920 in length

feature in Figure 1), µ and σ are the average and standard

deviation of all values for the feature. A sample result of

feature normalization is shown in Figure 1. It can be seen

that the features with large variance are transformed to the

same scale, which lays out the foundation for further key

feature selection.

B. PCA-based Key Feature Selection

After performing feature normalization, I/O access fea-

tures are normalized. However, applications often exhibit

complex behaviors. It is challenging to select a set of

features for I/O characteristics discovery without any domain

knowledge of applications [7]. To solve this problem, we

172



introduce the concept of principal component to describe and

identify I/O behaviors. Assume all data accesses construct

a multi-dimensional space/coordinate. Each point in the

coordinate represents one object access and each feature rep-

resents one dimensionality that describes an attribute of data

access (e.g., the access time feature represents a dimension

that describes when an object is accessed and the object ID is

another dimension describing which object is accessed). The

principal component analysis learns the “main direction”

of data accesses with a dimensionality reduction process.

This “main direction” represents the dominant data-access

pattern of I/O behaviors. They keep the key set of descriptive

features and reduce the noises in data accesses without

requiring any expertise or domain knowledge.

More specifically, PCA (principal component analysis)

method [13], an unsupervised machine learning analysis is

used to learn the key features. PCA is a statistical method

that captures patterns in multi-dimensional dataset by choos-

ing a set of important dimensionality automatically, the

principal components or key features, to reflect covariation

among the original coordinate. The input of PCA is the

set of normalized features, and the output of PCA is a

new subset of features defined by the principal components,

usually with less dimensionality. Each principal component

has an eigenvector, which indicates the importance of this

component. These eigenvector values can be calculated from

the covariance matrix in the PCA analysis. Assume the

eigenvectors for n principal components are λ1, λ2, ..., λn,

respectively, the eigenvector proportion of principal compo-

nent i is:

λi∑n

j=1
λj

. (2)

We define the first k principal components as “key fea-

tures”, if the below proportion formula is larger than a

threshold, such as 90%.

∑k

j=1
λj

∑n

j=1
λj

(3)

C. Object Clustering

With key features of data accesses, a clustering stage is

performed to identify the access similarity among objects for

discovering I/O characteristics. As the example in Figure 1

shows, the result of PCA is a new multi-dimensional data set,

where each row/record corresponds to one original object

access, and each column indicates a principal component.

We use the formula (3) to select the first k principal compo-

nents as the key features. Then, clustering is performed to

group data accesses based on their distances calculated by

the key features. As each data access has an object ID, we

can consider the objects in the same group have high I/O

similarity. If there are two or more data accesses for one

object in the same group, we will remove duplicate objects.

We have tried three clustering algorithms, nearest neigh-

bor (NN) [24], K-means [26] and DBSCAN [24], and

selected the DBSCAN. The reasons are two-fold. First,

DBSCAN is simple in terms of the algorithm complexity.

It allows fast processing of large data sets with the average

time complexity of O(n log(n)), where n is the number of

data points. On the contrast, K-means and NN are much

more time consuming. K-means has the time complexity of

O(n ∗ k ∗ t), where k is number of clusters, t is number of

iterative calculations. To find the k closest points, the time

complexity of NN is O(nd + kn), where d is the feature

number of each data point.

Second, DBSCAN is a density-based clustering algorithm

that is very robust and handles noisy data well. In fact,

according to our observations, the output data set of PCA

stage shows irregular shapes (e.g., most data points reside

close to a straight line, as seen in Figure 3). In this case,

K-means has low efficiency because it is used to identify a

set of data points that congregate around a region in multi-

dimensional space (spherical distribution) [26]. Figure 2

shows an example of K-means clustering results after PCA

for real traces in Sheepdog (such a small number of data

points is used for an easy illustration). The x axis and y

axis represent two key features (the results have no units

after the PCA stage). It can be seen that K-means algorithm

will group data sets into three clusters, where cluster1 and

cluster2 cross two lines. This is counter-intuitive because

data points in the same line have better similarity. Instead,

DBSCAN clusters these data points along the line (data

points with different colors and shapes means different

clusters on the line), and the result is much more accurate.

NN groups the points from two different lines into the same

cluster and does not generate the accurate result.

Figure 2: Object clustering with K-means

For clustering objects, DBSCAN uses a distance function

to calculate the distance among data accesses to decide

whether objects are in the same group. We use the Euclid

space distance [24] of key features (key features correlation)

to calculate the distance between two accesses. There are

two parameters highly relevant with the clustering results of

173



(a) FIO sequential read (b) FIO sequential write

(c) FIO 3 randread 3 sequential read (d) FIO 3 randwrite 3 sequential write

Figure 3: Two key features after PCA method with FIO on one or more VMs. The x axis is the 1st PC and the y axis is

the 2nd PC. There are no units for key features after PCA.

DBSCAN. One is a distance threshold dis thr that indicates

the maximum distance between two objects allowed in one

group. It is actually difficult to obtain an accurate value.

In this study, we present a dynamic method to adjust the

distance threshold dis thr, as discussed in Section IV-D. The

second parameter is min samples, the minimum number of

objects in a group. We set the value to 2 to ensure each

group at least has two data access points.

D. Distance Threshold Adjustment

In this section, we discuss how to tune DBSCAN to

conduct an appropriate number of clusters for grouping

objects. As we have described in the previous section,

DBSCAN controls the clustering results through the distance

threshold dis thr. If this value is too small, then the average

cluster size (the number of accesses in a cluster) will be

very large, which cannot distinguish I/O similarity well. On

the other hand, if this threshold is too large, the average

cluster size will be very small, e.g., one access in the cluster,

which leads to no similar objects in the system. To address

this challenge, we dynamically adjust the distance threshold

dis thr until selecting an appropriate value. Specifically, we

use the “elbow” method [27], which examines the variance

of the average cluster size for different thresholds (dis thr),

and chooses appropriate values for both the threshold value

and average cluster size.

V. EVALUATION

In this section, we present experimental evaluations of

the proposed I/O characterization methodology. We imple-

mented a lightweight I/O tracing layer in Sheepdog to collect

server-side traces, which include more than 20 features

such as access time, object ID, length, offset, target node,

etc. The experiments were conducted on a local 26-node

cluster, including 20 storage nodes and 6 compute nodes

hosting VMs. Each storage node has dual 2.5 GHz Xeon

8-core processors, 64GB memory, a 500GB Seagate SATA

HDD and a 200GB Intel SSD. The compute nodes are

used for running VM clients, where each client is emulated

by KVM/QEMU and configured with 2 vCPUs and 8GB

RAM. We conducted the experiments using both standard

file system benchmark FIO and application workload [28].

We used one storage node as the gateway node to collect all

I/O accesses and analyze access patterns.

In the tests, we dynamically adjusted the threshold from

0.000025 to 0.005 to obtain an appropriate threshold for

clustering. First, we report the detailed results of I/O char-

acteristics discovery. We conducted the evaluations with FIO

benchmarks on one or multiples VMs. For the test on one

VM, we launched FIO with data size of 50GB and request

size of 4MB. For the test on multiple VMs, we launched

FIO with 128 jobs, where each job accessed an independent

174



(a) FIO sequential read (b) FIO sequential write

(c) FIO rand read (d) FIO rand write

Figure 4: Object clusters with 20 largest-size with FIO on 1 VM. The cluster sizes vary from 12 to 23. The points with the

same color and shape mean they are in the same group. The results show strong object similarities for access patterns.

(a) FIO 3 randread 3 sequential read (b) FIO 3 randwrite 3 sequential write (c) FIO 3 readwrite 3 randreadwrite

Figure 5: Object clusters with 20 largest-size with FIO on 6 VMs. The cluster sizes vary from 11 to 29. The points with

the same color and shape mean they are in the same group. The results show strong object similarities for access patterns.

file with 100MB in an asynchronous way with the request

size of 4MB.

Figure 3 shows the results of key features learning from

I/O accesses with FIO running on 1 VM. Each point in the

coordinate indicates an object access. To be intuitive, we plot

40K accesses based on the first principal component (1st

PC) and second principal component (2nd PC) after PCA.

Supposing the data accesses as points distribution in a multi-

dimensional basis coordinate, the two principal components

(x axis and y axis ) reflect the dominant I/O behavior for

I/O trace in the new 2-dimensional basis coordinate.

Two observations can be made from the PCA results.

First, the results show that data-access patterns vary with dif-

ferent workloads (mean different shapes in the coordinates).

But we see most data points reside close to different straight

lines. All of them formed linear clusters locally and located

in certain regions. The I/O similarity can be accurately

identified as DBSCAN works well for this distribution.

Specially, the dark region with a large number of points

means “high-density cluster”, which will be re-clustered.

175



Second, besides FIO sequential read, other three bench-

marks (sequential write/rand read/rand write) also have

strong object similarities. One reason we infer is that the

operation system in VM can also have its behaviors and

affect the access patterns (e.g., the operation system call,

I/O scheduling).

Similar to the test results on 1 VM, most of the data

accesses construct line distribution in different regions for

multiple VMs tests, as shown in Figure 3. Among them,

FIO 3 randread 3 sequential read means tests on 6 VMs, in

which three FIO for rand read and three FIO for sequential

read.

Figure 6: The proportion of variance for principal compo-

nents with different FIO tests running on 1 VM and 6 VMs

To show the exact eigenvector proportion accounted for

each principal component (which is also used for key

features selection), we gave the values of first four principal

components in Figure 6. It can be seen that the first principal

component in the tests accounts for a large eigenvector

proportion. Specially, the 1st PC of FIO read accounts for

up to 44.3% eigenvector proportion. Other trace can account

from 27.9% to 38.2%, thus more principal components can

be used until getting the major proportion. PCA does return

a less dimensional data set in most cases. However, each

dimensionality actually corresponds to a combination of

multiple features/attributes of the original dataset, instead

of representing a single manually selected feature. In our

evaluations, although the first four principal components

reach more than 90% of the variance, they do not mean

only four features of the original dataset take effect. They

represent the most important characteristics of I/O accesses

that can be used as key features for pattern analysis. Also,

Figure 6 represents only one case. In fact, if the features have

large variations, more principal components will be selected

as key features.

As the number of clusters is large, we choose the first

20 largest clusters for each test (excluding “high-density

clusters”, indeed the number of “high-density clusters” are

less than 3 in each test), as shown in Figure 4 and Figure 5.

The results are beneficial for data I/O optimization (e.g.,

data prefetching) in two-fold. One is that they identify the

objects with high similarity in I/O behaviors in the same

group. The other is the cluster sizes are appropriate for data

I/O optimization (The average cluster size is from 2 to 25,

the maximum cluster size is less than 30).

VI. CONCLUSION

In the big data era, the I/O performance has become a

critical issue for many data-intensive applications on clouds.

Discovering patterns of I/O access behaviors and using

them for performance improvement is a promising technique

for cloud storage systems. Numerous studies have been

conducted in this space. However, most of them are either

limited to specific, user-defined features for pattern analysis

or heavily rely on domain knowledge about the applications,

limiting their usage.

In this paper, we have introduced a new method for

I/O characteristics and pattern discovery in cloud storage

systems. Different from existing approaches, this method

intends to capture data-access features as many as possible

to eliminate the bias for specific workloads. It utilizes

the principal component analysis to retrieve key features

from traces automatically. Based on learned key features,

a density-based clustering, i.e., DBSCAN, is performed to

mine objects correlation and to group objects for revealing

I/O characteristics. In this way, the I/O characteristics and

patterns are analyzed and discovered without any domain

knowledge. We also conducted extensive experimental eval-

uations to validate the proposed I/O characterization method-

ology. In the future, we plan to implement use cases for I/O

optimizations, especially for heterogeneous cloud storage

systems.

ACKNOWLEDGMENT

We are thankful to the anonymous reviewers for their

valuable feedback. This research is supported in part

by the National Science Foundation under grant CNS-

1338078, CNS-1526055, IIP-1362134, CCF-1409946, and

CCF-1718336. This research is also supported by the In-

ternational Cooperation Project of Institute of Information

Engineering, Chinese Academy of Sciences under Grant No.

Y7Z0511101.

REFERENCES

[1] Y. Yin, J. Li, J. He, X. Sun, and R. Thakur, “Pattern-

direct and layout-aware replication scheme for parallel

I/O systems,” in Proceedings of the IPDPS’13.

[2] Y. Yin, S. Byna, H. Song, X. H. Sun, and R. Thakur,

“Boosting application-specific parallel I/O optimization

using IOSIG,” in Proc. of the CCGrid’12.

[3] T. M. Madhyastha and D. A. Read, “Learning to

classify parallel input/output access patterns,” IEEE

Transactions on TPDS, vol. 13, no. 8, pp. 802–813,

2002.

176



[4] T. M. Madhyastha and D. Read, “Exploiting global

input output access pattern classification,” in Proc. of

the ACM/IEEE Conference in Supercomputing, 1997.

[5] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross,

“Omnisc’IO: a grammar-based approach to spatial and

temporal I/O patterns prediction,” in Proc. of the

SC’14.

[6] J. He, J. Bent, A. Torres, G. Grider, G. Gibson,

C. Maltzahn, and X. Sun, “I/O acceleration with pattern

detection,” in Proc. of the HPDC’13, 2013, pp. 25–36.

[7] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz,

“Design implications for enterprise storage systems via

multi-dimensional trace analysis,” in Proc. of SOSP’11,

2011, pp. 43–56.

[8] P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang,

“Farmer: a novel approach to file access correlation

mining and evaluation reference model for optimizing

peta-scale file system performance,” in Proc. of the

HPDC’08, 2008.

[9] Z. Li, Z. Chen, and Y. Zhou, “Mining block correla-

tions to improve storage performance,” ACM Trans. on

Storage, vol. 1, no. 2, pp. 213–245, 2005.

[10] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.

Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “Semantically-smart disk systems,” Proc. of

the FAST’03, vol. 3, pp. 73–88, 2003.

[11] D. Dai, Y. Chen, D. Kimpe, and R. Ross, “Provenance-

based object storage prediction scheme for scientific

big data applications,” in Proc. of the IEEE Interna-

tional Conference on Conference on Big Data, 2014.

[12] L. Wang, Y. Ma, A. Y. Zomaya, R. Ranjan, and

D. Chen, “A parallel file system with application-

aware data layout policies for massive remote sensing

image processing in digital earth,” IEEE Transactions

on TPDS, 2015.

[13] I. Jolliffe, Principal component analysis. John Wiley

and Sons, Ltd, 2002.

[14] H. Luu, B. Behzad, R. Aydt, and M. Winslett, “A multi-

level approach for understanding I/O activity in HPC

applications,” in Proc. of the Cluster’13.

[15] “HPC open source software projects:

LANL-Trace,” 2017. [Online]. Available:

http://institute.lanl.gov/data/software/lanl-trace.

[16] S. A. Wright, S. D. Hammond, S. J. Pennycook,

R. F. Bird, J. A. Herdman, I. Miller, A. Vadgama,

A. Bhalerao, and S. A. Jarvis, “Parallel file system

analysis through application I/O tracing,” The Com-

puter Journal, 2013.

[17] D. Dai, F. S. Bao, J. Zhou, and Y. Chen, “Block2vec:

A deep learning strategy on mining block correlations

in storage systems,” in Proc. of the 45th International

Conference on Parallel Processing Workshops, 2016.

[18] Y. Liu, R. Gunasekaran, X. S. Ma, and S. S. Vazhkudai,

“Server-side log data analytics for I/O workload char-

acterization and coordination on large shared storage

systems,” in Proc. of the SC’16, 2016.

[19] J. Oly and D. Reed, “Markov model prediction of I/O

requests for scientific applications,” in Proc. of the

international conference on Supercomputing, 2002.

[20] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodol-

sky, and J. Zelenka, “Informed prefetching and

caching,” in Proc. of the SOSP, 1995, pp. 79–95.

[21] K. H. P. MCarns, W. Allcock, C. Bacon, S. Lang,

R. Latham, and R. Ross, “Understanding and im-

proving computational science storage access through

continuous characterization,” ACM Transactions on

Storage, 2011.

[22] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and

K. Riley, “24/7 characterization of petascale I/O work-

loads,” in Proc. of Cluster Computing and Workshops,

2009.

[23] “Sheepdog project,” 2017. [Online]. Available:

https://github.com/sheepdog/.

[24] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A

density-based algorithm for discovering clusters in

large spatial databases with noise,” Kdd, 1996.

[25] L. A. Shalabi, Z. Shaaban, and B. Kasasbeh, “Data

mining: A preprocessing engine,” Journal of Computer

Science, vol. 2, no. 9, pp. 735–739, 2006.

[26] E. Alpaydin, “Introduction to machine learning,” MIT

Press, Cambridge, 2004.

[27] J. D. J. Ketchen and C. L. Shook, “The application of

cluster analysis in strategic management research: An

analysis and critique,” Strategic Management Journal,

vol. 17, no. 6, pp. 441–458, 1996.

[28] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,

W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu,

K. Zhan, X. Li, and B. Qiu, “Bigdatabench: a big data

benchmark suite from internet services,” in Proc. of

HPCA, 2014.

177


