
An Adaptive Separation-Aware FTL for Improving 
the Efficiency of Garbage Collection in SSDs 

Wei Xie, Yong Chen 
Department of Computer Science 

Texas Tech University 
{wei.xie, yong.chen}@ttu.edu 

 
Abstract— Hot/cold data separation in flash-based solid state 
drives has been considered important to the overall 
performance due to the costly garbage collection overhead. 
This work proposes a method that accurately and naturally 
identifies and separates hot/cold data while only incurs 
minimal overhead. The proposed method only requires 
minimal on-device RAM space. Simulation results have 
shown that the proposed ASA-FTL reduce the GC overhead 
by up to 33% and improve the overall response time by 9% 
against the most advanced existing FTL in both real 
workloads and synthetic workloads. 

I. INTRODUCTION  

In recent years, the emerged flash-memory based solid 
state drives (SSD) have fundamentally changed the 
landscape of storage systems and have rapidly replaced 
traditional hard disk drives (HDD) in many applications. 
Among different SSD devices, the NAND flash-based 
SSD gains the most popularity due to its high performance 
and relative low cost.  

One critical characteristic of the flash-based SSD is 
that the data need to be erased before the flash memory 
can be written (programmed) again. The erasure operation 
is handled in blocks, and each block consists of multiple 
(usually 64 or 128) pages. The page is the smallest size 
that read and write operations are carried out. Due to the 
mismatch of the granularity of the erasure and the 
read/write operation, out-of-place update [1] scheme is 
adopted in most flash-based SSDs to allow acceptable 
write performance. This out-of-place write scheme makes 
the flash-based SSDs require a Flash Translation Layer 
(FTL) to manage the logical to physical address translation 
and a garbage collection when free flash space is 
exhausted. 

Among different FTL schemes, the page-level FTL is 
considered performing best; but it requires considerable 
RAM space storing the mapping table, which is a critical 
limit for the inadequate on-device RAM space. The state-
of-art Demand-based Selective Caching of Page-level 
Address Mapping scheme (DFTL) [1] leverages the page-
level FTL scheme while significantly reduces the RAM 
usage by selectively caching the page-level mapping table. 
However, the garbage collection efficiency in the DFTL 
suffers since the mixture of hot/cold data in data blocks 
incur extra overhead in garbage collection. Separating 
hot/cold data into different physical space has the potential 
of reducing the garbage collection overhead. 

This work aims at increasing the efficiency the 
garbage collection of the page-level FTLs, by identifying 

and separating the hot/cold data online. The proposed 
method leverages the page-level data access history as 
hotness information and a natural clustering algorithm to 
separate hot/cold data in the flash memory, meanwhile 
incurring minimal space and computational overhead with 
selective caching and random sampling of the hotness 
information. 

Several recent studies have conducted hot/cold data 
identification and separation in a different context and for 
a different purpose. For instance, Chiang proposed an 
online hot/cold separation method that exploits the write 
frequency [2]. Multiple-pool scheme is introduced to 
support on-write data separation. The log-structured file 
system also uses the similar out-of-place write scheme and 
is considered suitable for flash-based SSDs [3]. The SSD 
friendly file system (SFS) exploits both the access recency 
and frequency for measuring hotness and adopts an 
algorithm that calculates the natural separation criteria 
based on the hotness information [3]. 

This work employs the hot/cold separation algorithm 
in the FTL layer similar to the one proposed in SFS. 
However, it differs from the SFS in following ways to 
leverage the restricted RAM space and computing power 
on board: (1) hotness information are randomly sampled 
for calculating the separation criteria; (2) hotness 
information are stored in flash memory and cached into 
RAM on-demand; and (3) the separation is fine-grained: in 
unit of pages.  

II. ASA-FTL SYSTEM DESIGN 

As demonstrated in Fig. 1, the proposed Adaptive 

 
Fig. 1. System Architecture of ASA-FTL. 

 



 

Seperation-Aware FTL (ASA-FTL) system consists of 
four major data structures maintained in RAM: (1) the 
Cached Mapping Table, where selective page mapping 
information are stored to accommodate incoming requests; 
(2) the Cached Hotness Table, where the access history 
(Age Since Last Update or Age) and hotness (Hotness 
Label 0, 1 and 2 corresponding to cold, warm, and hot) 
information of selective pages are stored so that the 
recency (Age) could be used at runtime to determine the 
hotness of data; (3) Global Translation Directory that maps 
the logical address to the physical address of the 
translation block in flash memory or the Extended 
Translation Blocks structure, which is used when a cache 
miss happens; and (4) Sample Age Table that stores a 
number of age values from random selected page, which 
are used as data sets for calculating the separation criteria. 

The flash memory is separated into Data Blocks and 
Extended Translation Blocks (ETB), similar to the DFTL. 
The Data Blocks are separated into hot, warm and cold 
partitions to independently accept incoming write requests 
like the multiple-pool scheme [2]. The ETB permanently 
stores the mapping and hotness information of each page 
and loaded in CMT and CHT on-demand. 

The Hotness Updating algorithm run in the background 
periodically samples the Age values from random pages 
into the SAT, and then leverages these values to calculate 
the separation criteria, using the K-means clustering 
algorithm. Thus when a write request comes, for example 
page 8 as shown in Fig.1, the ASA-FTL works as follows. 
(1) If the cache is full, it evicts one page (page 7) from 
both the CMT and CHT. (2) It looks up the GTD to 
retrieve the location of the entry in the ETB containing 
page 7 (which is in translation page 21) and the entry is 
updated. (3) It loads the information of page 8 into CMT 
and CHT. When loading the Age value, the time in ETB is 
added or Age= 0(Age) + 50(Current Time) – 34(Time 
Evicted); (4) the Age of page 8 is compared to the criteria 
calculated and the destination partition is determined, then 
the write request is handled by the corresponding partition 
(hot, warm or cold) in the Data Blocks. 

Only a small part of the Age values are sampled to 
save the on-device RAM space and the computing 
powered required by the K-means algorithm. The saved 
RAM space could be used for other purpose like data 
caching, read ahead etc, allowing more performance 
enhancement opportunities.  

III. PRELIMINARY EVALUATION AND RESULTS 

We have adopted the popular SSD simulator FlashSim 

in this study to implement and evaluate the proposed 
ASA-FTL. The ASA-FTL is implemented upon the DFTL 
and is evaluated against the state-of-the-art DFTL.  

The ASA-FTL system was tested on 3 different real 
workloads and 3 synthetic workloads with varied 
skewness (workload with skewness means some data are 
more frequently accessed than others). The notation synth 
x/10 means x/10 of the write traffics go to (10-x)/x flash 
memory space. The rightmost chart in Fig.2 (b) shows the 
result of the trace with uniform traffic, which no difference 
is observed between ASA-FTL and DFTL. 

As shown in Fig.2, the ASA-FTL significantly reduces 
the garbage collection overhead (GC page read/write) by 
33% and overall performance (average response time) by 
9% of the Financial1 and synth9/10 workload. This is due 
to their small request size and high degree of skewness. 
The effect of the ASA-FTL on the Cambridge and TPCC 
workload traces is much smaller due to their large request 
size and small skewness. Their garbage collection 
overhead is already close to optimal with the CAT policy, 
which is used in DFTL [4]. By comparing the simulation 
results of the synth9/10, synth7/10 and synth5/10, it can be 
seen that the benefit of the ASA-FTL decreases as the 
skewness of the workload reduces.  

IV. CONCLUSION AND ONGOING WORK 

Hot/cold identification and separation is an important 
method to make garbage collection more efficient and the 
SSD’s overall performance improved. This paper proposes 
a FTL that effectively identifies and separates hot/cold 
data while only uses minimal on-device hardware 
resources. We are also working on unifying the garbage 
collection policy and wear leveling together to further 
improve the performance and expand the lifespan.  

REFERENCES 
[1] Gupta, Aayush, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a 

flash translation layer employing demand-based selective caching 
of page-level address mappings. Vol. 44. No. 3. ACM, 2009. 

[2] Chiang, M.-L., & Chang, R.-C. (1999). Cleaning policies in mobile 
computers using flash memory. Journal of Systems and Software. 
doi:10.1016/S0164-1212(99)00059-X 

[3] Min, C., Kim, K., Cho, H., Lee, S.-W., & Eom, Y. I. (2012). SFS: 
random write considered harmful in solid state drives. Proceedings 
of the 10th USENIX conference on File and Storage Technologies. 
San Jose, CA: USENIX Association. 

[4] Desnoyers, P. (2012). Analytic modeling of SSD write 
performance. In Proceedings of the 5th Annual International 
Systems and Storage Conference (p. 14). ACM 

Fig.2. The simulation results of (a) real workloads and (b) synthetic workloads. All the traces are tested on ASA-FTL against DFTL. GC 
read/write count, block erasure count and average I/O response time are normalized and shown from left to right. 


