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Abstract—
Flash-memory based Solid State Drives (SSDs) embrace

higher performance and lower power consumption compared
to traditional storage devices (HDDs). These benefits are
needed in HPC systems, especially with the growing demand
of supporting Big Data applications. In this paper, we study
placement and deployment strategies of SSDs in HPC systems
to maximize the performance improvement, given a practical
fixed hardware budget constraint. We propose a pattern-model
approach to guide SSD deployment for HPC systems through
two steps; characterizing workload and mapping deployment
strategy. The first step is responsible for characterizing the
access patterns of the workload and the second step contributes
the actual deployment recommendation for Parallel File System
(PFS) configuration combining with an analytical model. We
have carried out initial experimental tests and the results
confirmed that the proposed approach can guide placement
of SSDs in HPC systems for accelerating data accesses. Our
research will be helpful in guiding designs and developments
for Big Data applications in current and projected HPC systems
including exascale systems.
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I. INTRODUCTION

High performance computing (HPC) applications have
been observed becoming increasingly data intensive [9] in
recent years. Data volumes of many scientific simulations
and applications in critical research areas like astrophysics,
geographic systems, climate sciences, medical image pro-
cessing, and high-energy physics, have been substantially
growing from the perspectives of both complexity and scale.
Such big data brings a bigger challenge than ever for
efficient data accesses in HPC systems.
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A potential solution of boosting data-access capability
for Big Data applications is to leverage emerging flash-
memory based Solid State Drives (SSDs). Unlike con-
ventional Hard Disk Drives (HDDs) with moving parts,
SSDs are completely built on semiconductor chips, which
makes SSDs fundamentally different from HDDs in many
aspects. For HDDs, the mechanical components impact the
reliability [10] and performance. In addition, HDDs are
inherently energy-inefficient and the power cost increases at
a rate of 20%∼30% each year [15]. Since SSDs are free of
mechanical components and do not suffer seek time delays
and rotation latencies, the data-access performance of SSDs
is much higher than HDDs, especially for random accesses.
In addition, the power consumption of SSDs is considerably
reduced compared to conventional HDDs [1]. The down
sides of SSDs, however, include high cost to capacity
and limited writing cycles. Fortunately, both limitations are
being improved. The cost of flash memory keeps decreasing
annually at a rate of roughly 50% per year for the last several
years [3]. The number of writing cycles keeps improving
as well. The superior performance, reliability, and power
consumption benefits, along with decreased ratio of cost
to capacity and increased writing cycles, make SSD use
a promising candidate to accelerate data accesses for HPC
systems. A few systems are being deployed with substantial
amounts of flash memory, such as the Gordon system, built
in San Diego Supercomputer Center (SDSC) with 256TB of
SSDs as its storage [6].

The challenge of leveraging SSDs for Big Data workloads
and maximizing the benefits of an investment, however,
remain daunting. In addition, at the beginning of designing
an HPC system, the design/deploy phase of making the
most cost-effective decisions with a fixed hardware budget
is a critical concern to be considered. In this paper, we
investigate placement and deployment strategies of SSDs in
HPC systems to maximize data-access acceleration benefits.
We propose a pattern-model (I/O access pattern of workload
and a performance model estimating SSD characterizations)
guided deployment approach to accomplish this task given
a practical consideration of a fixed hardware budget. The
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proposed approach is utilized to guide SSD deployments in
the system with data-access pattern characterization and de-
ployment strategy mapping. The first step is to characterize
specific I/O access patterns for given workloads. The second
step examines the impact on the system performance of
various deployment strategies via a performance model, and
selects placement strategies considering the given workload.

We design the pattern-models to guide SSD deployment
in HPC systems combining with I/O access patterns and a
performance model (SectionII). In our evaluation, we present
the impacts of different deployment strategies and provide
a straightforward approach for the given workloads (Section
III). We also discuss related studies to our current approach
and show our improvements (Section IV). In the future, we
will evaluate real scientific workloads to further examine the
SSD performance in HPC systems (SectionV).

II. PATTERN-MODEL GUIDED DEPLOYMENT APPROACH

This section describes the proposed pattern-model guided
approach with a goal of maximizing data access acceleration
for HPC systems with proper placement of SSDs. Firstly, we
introduce the overview of the proposed approach, and then
analyze the deployment strategies given a fixed hardware
budget through an analytical performance model.

A. Overview of Guided Approach

Most HPC systems are cluster-like systems, with many
compute nodes and some storage nodes. We design a new
pattern-model guided approach to be used at the initial
construction of the system in order to properly deploy the
SSDs in the HPC storage system, effectively accelerating
the performance and saving on power consumption. The
approach overview is shown in Figure 1. The proposed
pattern-model guided approach mainly consists of two com-
ponents; workload characterization and strategy mapping as
shown in the figure. The workload characterization acts as
a detector to recognize/characterize the I/O access patters
of applications, e.g. random read intensive, for strategy
mapping in order to configure a better SSD deployment
strategy that will maximize I/O access acceleration. The
strategy mapping is used to direct the actual deployment
strategy by combining the I/O access information collected
and a mathematical model which analyzes the performance
tradeoff of varied deployment strategies.

1) Workload Characterization: In our proposed ap-
proach, we discuss different access patterns of request size,
I/O operation type (e.g. read, write, or both read and write),
and spatial pattern, including contiguous requests (sequen-
tial) or non-contiguous (random) requests. In our analytical
model, we also consider the ratio of local requests to remote
requests since the access efficiency on localized compute
nodes is much higher than that on storage nodes, which is
confirmed through our experimental results.
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Figure 1. Pattern-Model Guided Approach

Our proposed pattern-model guided approach of SSD
deployment for HPC systems is used at the beginning of
setting up an HPC cluster. The I/O access patterns of work-
loads are either given or obtained from I/O characterization
tools. Darshan [5] is a scalable HPC I/O characterization
tool to capture the access behaviors of workloads. IOSIG
is another tool for featuring the I/O access pattern of an
application with two basic steps of trace collecting and
offline analysis [4, 8].

2) Strategy Mapping: The strategy mapping has a goal
of determining the deployment strategy for SSDs according
to the I/O access patterns and SSD characteristics combined
with the analytical model we proposed. The strategy map is
a single mapping from an analytical result to a deployment
strategy, shown in an example that follows. The analysis1
could be sequential read I/O access with obtained result
of the performance model, and the strategy5 could be
SSD2 strategy, which will be specifically explained in the
evaluation section.

Analysis1 −→ Strategy5

In this component, we recorded the evaluation results
as a strategy map to provide for strategy mapping. After
characterizing the workload and analyzing the model, we
map the analytical result to the deployment strategy which
eventually guides the deployment of SSDs. In the evaluation
section, according to different access patterns of the given
workload, we present the corresponding recommendations
of SSD deployment from our initial experimental results.

B. Varied Deployment Strategies

As discussed previously, there exists a tradeoff among
SSD deployment strategies for HPC systems, among deploy-
ing SSDs on compute nodes, or storage nodes, or on both
nodes. We first characterize the impact of these strategies
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with a performance model, then the pattern-model guided
approach leverages this performance model to analyze and
select deployment strategies.

R = Rlocal +Rremote +Rinter (1)

W = B ×R −→ B =
W

R
(2)

1) Performance Model Analysis: In this subsection, we
quantitatively analyze the deployment strategy of SSDs in
HPC systems. Different deployment strategies could impact
response time, the time required to react to an I/O request,
and also impact I/O bandwidth, the rate at which I/O is
performed. The performance model we proposed is hueristic
but could guide the SSD deployment for HPC systems.

We assume that the total response time of the I/O requests
is R and the aggregate bandwidth is B, and the workload is
W , which is composed of a sequence of requests. We also
assume the fixed budget of SSDs is G (can be considered as
with a total number of G SSDs available), and the percentage
of G deployed on compute nodes is p. Additionally, We
assume the read latency and the write latency of SSD are
Lr−ssd and Lw−ssd, and the average latency is Lssd. Read
and write latency of HDDs are denoted as Lr−hdd and
Lw−hdd, and the average latency denoted as Lhdd. The
bandwidth of the interconnection is denoted as Binter. The
available capacity of SSDs that could be utilized is assumed
as ω, and the percentage of workload serviced locally is γ.
The response time consists of three parts of times, local
response time, remote response time and the time spent
on interconnection. We respectively assume the three types
of response time as Rlocal, Rremote and Rinter. Thus the
total response time could be modeled and approximated
as shown in equation (1) and the aggregate bandwidth of
the workload is shown in equation (2). We describe the
aggregate bandwidth from Little’s Law.

R =



γ ×W × Lssd + (1−γ)×W
Binter

+(1− p)× ω × Lssd
+[(1− γ)×W − (1− p)× ω]× Lhdd,
(if γW ≤ pω)

p× ω × Lssd + W−p×ω
Binter

+(1− p)× ω × Lssd
+(W − ω)× Lhdd,
(if pω < γW )

(3)

There are two situations in local response time depending
on whether or not the SSDs on compute nodes could
satisfy the local requests and similar for the other two
types of response time. Therefore, the total response time
could be calculated as shown in equation (3). The tradeoff
is that when SSDs are deployed on compute nodes, they

become local storage to certain compute nodes with less
capacity available as global shared storage. While deploying
SSDs on storage nodes, they become global shared storage,
can service more requests, but involve an interconnection
transmission bottleneck. For the quantitative analysis, we
assume the capacity of SSD that one compute node could
utilize is C, and the number of compute nodes is n. Hence,
the equation (4) describes the portion of SSDs one compute
node could utilize. From this equation we can see that if
the SSD budget on one certain compute node increases,
then the shared SSD storage on storage nodes that could
be utilized by the compute node will decrease. Although
the local SSD storage could be a benefit for the specific
compute node, storage node SSD space will decrease at
a rate n times faster than the increasing rate of SSD on
the compute node. This analysis determines one tradeoff of
different deployment strategies.

2) Compute-side Deployment: When deploying all SSDs
on compute nodes, these SSDs are utilized as local storage
for said compute nodes. Hence, if requests are serviced
from SSDs, the response time can be short as I/O requests
need not go through the interconnection to retrieve/store
data from/to storage nodes. With this deployment strategy,
the SSD budget is dedicated to these compute nodes. Each
compute node gets limited SSD capacity though (as each
SSD is deployed as a local storage), and could only service
the requests locally. Although the local storage provides high
efficiency for local I/O requests, the amount of requests
serviced is limited since the space of the local SSD is much
smaller compared to the shared global storage. This trade-off
needs to be evaluated and analyzed.

C =
p ∗G
n

+ (1− p)G (4)

3) Storage-side Deployment: In contrast to the compute-
side deployment strategy, a storage-side deployment strategy
makes all I/O requests from compute nodes go through an
interconnection to be serviced, which causes substantial data
movement. With this strategy, the entire budget of SSDs is
utilized as a global shared storage on storage nodes.

Therefore, the available SSD storage capacity (as a global
shared storage) is much larger to service substantial more
I/O requests. This benefit comes with a tradeoff that partial
I/O requests involve increased response time due to data
movement over the interconnection, compared with the per-
formance gain achieved from the compute-side deployment
strategy.

4) Compute-Storage Deployment: After discussing de-
ployment strategies on compute nodes and storage nodes
separately, we can explore a hybrid strategy combining
compute-side and storage-side deployment. With this strat-
egy, a challenge is how SSDs are distributed among compute
nodes and storage nodes. Although compute-side deploy-
ment increases the local storage for compute nodes to
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improve I/O access efficiency, the capacity of global shared
SSD storage on storage nodes is decreased thus servicing
less I/O requests efficiently. In addition, the total capacity
of SSDs that compute nodes could utilize is the combination
of the local SSDs in compute nodes and the shared SSD in
storage nodes, but the rate of SSD capacity decreasing on
storage nodes is n times higher than the rate of SSD capacity
increasing on compute nodes. Hence, the increase of local
SSD storage in compute nodes will result in a large decrease
of shared SSD in storage nodes, although utilizing the shared
SSD will cause overhead due to navigation through the
interconnection.

III. EXPERIMENTAL RESULTS AND ANALYSES

This section presents preliminary experimental and an-
alytical results for studying the impact of different SSD
placement strategies and whether the proposed approach can
guide SSD placement in HPC systems.

A. Experimental Settings

Our experiments were conducted on a 16-node Dell
PowerEdge Linux-based cluster, which is composed of one
PowerEdge R515 rack server node and 15 PowerEdge R415
nodes, with a total of 32 processors and 128 cores. The nodes
are connected fully via PowerConnect 2848 network switch
with 42 1Gigabits Ethernet Ports. The PowerEdge R515
server node has dual quad-core 2.6GHz AMD Opteron 4130
processors, 8GB memory, and a RAID-5 disk array with
3TB storage capacity composed of 7200 RPM Near-Line
SAS drives. Each PowerEdge R415 node has dual quad-core
2.6GHz AMD Opteron 4130 processors, 4GB memory and a
500GB 7200RPM Near-Line SAS hard drive. We conducted
our experiments through utilizing NFS and PVFS2 [16].
PVFS2 was configured with one metadata server and 6 I/O
server nodes. Eight other nodes were utilized as compute
nodes to run a total of 32 processes. Six Crucial Technology
RealSSD C300 SSDs with 64GB capacity and 6GB/s data
transfer rate were deployed for performance evaluation for
different placement strategies.

B. Benchmarks

IOR [14] and MPI-IO Test [13] benchmarks were selected
to evaluate the performance of different SSD deployment
strategies. Interleaved Or Random (IOR) [14] is a parallel
file system benchmark developed by Lawrence Livermore
National Laboratory for testing the performance in HPC
systems. IOR could test the aggregate I/O bandwidth of
different I/O operations via several typical middleware in-
terfaces including POSIX, MPI, and HDF5 by providing
various I/O access patterns. MPI-IO Test [13] is a benchmark
to test parallel I/O performance developed by Los Alamos
National Laboratory for cluster systems. This benchmark is
built on MPI’s I/O calls to record the timing information of
different I/O operations with various I/O profiles.

C. Experimental Results

We performed experimental tests with different I/O access
patterns mentioned previously and with various SSD place-
ment strategies. We have a budget of 6 SSDs and conducted
evaluations with 8 strategies, including using only HDDs, all
SSDs at storage nodes, all SSDs at compute nodes, and SSDs
set up at both compute and storage nodes. We use HDDs
to denote only using HDDs, SSD0 denote all SSDs placed
at compute nodes, and SSDi denote a i/6 portion of SSDs
placed at storage nodes.
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Figure 2. Read Performance

The aggregate bandwidth of IOR and execution time of
MPI-IO Test are the evaluation metrics in our experimental
tests. Figure 2 and Figure 3 are the results of running
IOR with varied file sizes, and Figure 5 and Figure 6 are
the results of MPI-IO Test, both with the ratio γ = 1/4.
Two conclusions can be drawn from these current results.
First, with all I/O access patterns we performed, different
placement strategies have a clear impact on the performance.
In addition, different placement strategies can have consid-
erable variation in terms of the performance. Second, the
placement strategies and the performance are correlated with
the access pattern. The optimal strategy can be found with
the consideration of access patterns and the performance
model that characterizes the system, as in our proposed
approach. For read requests, either random or sequential,
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Figure 3. Write Performance

SSD3 and SSD4 are the optimal SSD deployment strate-
gies both in IOR and MPI-IO Test. Even though random and
sequential requests may present different outcomes within
these strategies, they still obtained the highest performances
in comparison to the other configurations. However, the
placement strategies perform differently for write requests
due to the relatively low write performance of SSD. As
seen from the figures, distinctive from read requests, more
SSDs placed at compute nodes shows better performance
and SSD1 is the optimal strategy for both sequential and
random write requests.

Even though the current experimental results are limited,
they have confirmed that different placement strategies have
a non-negligible impact on the data-access acceleration in
HPC systems. A proper consideration of the access pattern
and an optimal placement strategy of SSDs can lead to
considerable improvement for the performance. It is also
possible that a“mixed” strategy can be found to deploy SSDs
in a case with mixed workloads and access patterns. The
current evaluations are preliminary, but they have shown the
difference and importance of different configurations with
SSDs in an HPC system. We will continue investigating
the issue and carry out further evaluations for the proposed
approach in this study to maximize data-access acceleration
from a placement/deployment perspective.

IV. RELATED WORK

Extensive studies have focused on utilizing SSDs as com-
plementary to HDDs on various aspects to gain performance
improvements. This section discusses existing studies from
two perspectives: SSDs used “vertically” as a cache buffer,
and SSDs used “horizontally” and combined with HDDs as
a hybrid system.

A. Vertical Integration of SSDs

Integrating SSDs in a HPC system architecture as multiple
level caches can enlarge the cache capacity, reduce the cost,
and enhance the performance. In addition, it can decrease
the power consumption since DRAM consumes a large
portion of overall system power [19]. In [11], the author
proposed to split the SSD cache into two regions, a read
region and a write region, since SSD performs differently
for read requests and write requests. In [2], the authors
explored the performance advantages of SSDs at the memory
level, beyond the storage level cache. It utilizes SSDs as
the extension of the RAM in memory system with offering
larger capacity for server systems. Actually, the hybrid
storage disk that combines conventional HDD with NAND
flash memory cache has been commercially available [18].

B. Horizontal Integration of SSDs

Since the current cost of SSD is still relatively high and
the capacity of SSD is relatively low compared to HDD,
a combination of SSDs and HDDs for cost-effectiveness
is currently a widely studied topic and a dominant hybrid
approach for storage systems.

Hystor is an exemplar hybrid storage system where hot
data (performance critical blocks) is placed in SSD whereas
other cold data is held in conventional HDD [7]. The Hystor
maintains a remap area to map addresses and control the data
flow. It also keeps a write-back area in SSD to delay the dirty
blocks of write requests, which is especially beneficial for
write-intensive workloads. ComboDrive integrates the space
of SSD and HDD together through maintaining a global
mapping table from virtual address to physical address [17].
In addition, the ComboDrive can select data and file to
be placed in SSD or HDD. The authors also exploited the
combination of SSD and HDD as a hybrid storage system,
where a capacity planner is proposed to find the most cost-
effective storage configuration, and a dynamic controller
is maintained to predict the performance through history
information [12]. However, our current study is distinct from
the aforementioned studies in following aspects. First, our
proposed approach is involved at the beginning phase of
designing the HPC systems. Second, our approach is to
conduct the deployment of SSDs based on the I/O access
patterns, not tend to the schedule or organization of data or
requests.
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V. CONCLUSION AND FUTURE WORK

Flash-memory based SSDs are promising storage devices
in the storage hierarchy of HPC systems. In practice, these
HPC systems come with a fixed hardware budget. With
a given fixed hardware budget, how to utilize SSDs to
maximize storage access acceleration for current Big Data
applications is an important issue to be studied. Different
placement strategies of SSDs can impact the performance,
considering the factors of I/O access pattern, data movement
across the interconnection network, and local/global shared
storage capacity. In this study, we model the performance
impact of placement strategies and propose a pattern-model
guided approach consisted of workload characterization and
strategy mapping to guide the deployment of SSDs to
maximize the performance benefit. The workload characteri-
zation identifies the I/O access patterns of applications. The
strategy mapping provides the actual deployment strategy
for the HPC systems through a performance model and
quantitative analysis of different deployment strategies. We
believe that appropriate placement of SSDs for HPC systems
and Big Data applications can be critical and this study
provides a possible solution that guides such placement and
deployment strategies. In the near future, we will conduct
more comprehensive evaluations and with real Big Data
applications to further evaluate SSD deployment strategies.
This study is useful in guiding designs and developments for
Big Data workloads in current and projected HPC systems
including exascale systems.
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