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Abstract—Data prefetching can be beneficial for improving 
parallel I/O system performance, but the amount of benefit 
depends on how efficiently and swiftly prefetches can be done. In 
this study, we propose a new prefetching strategy, called 
collective prefetching. The idea is to exploit the correlation among 
I/O accesses of multiple processes of a parallel application and 
carry out prefetches collectively, instead of the traditional 
strategy of carrying out prefetches by each process individually. 
The rationale behind this new collective prefetching strategy is 
that the concurrent processes of the same parallel application 
have strong correlation with respect to their I/O requests. We 
present the idea, initial design and implementation of the new 
collective prefetching strategy in this study. The preliminary 
experimental results show that this new collective prefetching 
strategy holds promise for improving parallel I/O performance.  
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I.  MOTIVATION 
High-performance computing (HPC) has crossed the 

Petaflop mark and is reaching for the Exaflop range [17]. 
Although computing resources are making rapid progress, there 
is a significant gap between processing capacity and data-
access performance. Due to this gap, available computing 
devices often have to stay idle waiting for data to arrive, which 
leads to a severe overall performance degradation. Figure 1 
compares the single disk drive bandwidth improvement (left 
vertical axis) and the computational capability improvement of 
well-known supercomputers (right vertical axis) for the past 
decades [14]. The computational performance improvement 
rate is magnitudes higher than the bandwidth improvement rate 
of disk drives. The rapid advance of processor architectures and 
computing capability has put ever more pressure on sluggish 
storage and I/O systems, especially for high-performance 
computing where performance is key. In order to match the 
rapid advance of processor architectures and the fast increasing 
scale of computational capability, parallel I/O is essential to 
address this problem. Many high-performance computing 
applications and scientific simulations in critical areas of 

research, such as nanotechnology, astrophysics, climate, and 
high energy physics, are becoming more and more data 
intensive [14]. These applications contain a large number of 
I/O accesses, where large amounts of data are stored to and 
retrieved from disks. They need high performance parallel I/O 
systems to meet their demands. There is a great need for 
research to improve the parallel I/O performance of high-
performance computing systems and in investigating novel and 
intelligent solutions such as data prefetching. 

 

Figure 1.  FLOPS of Supercomputers v.s. Single Disk Drive Bandwidth 

The fundamental idea of data prefetching is to observe data 
access patterns, and then predict future accesses and fetch that 
data from underlying storage device so it is available when it is 
needed by the computation. It is recognized as a critical and 
promising technique that improves parallel I/O access 
performance for many applications [2][3][11][12][13]. Many 
scientific applications can benefit from prefetching because 
such applications have been shown that they access structured 
data (such as two-dimensional/three-dimensional array of 
single-precision/double-precision floating point data) with 
predictable and regular patterns. The data are accessed 
regularly and periodically for processing, and the processed 
data are written into storage. In these applications, regular 
patterns of I/O accesses can be identified and I/O prefetching is 
effective in speeding up parallel I/O performance. However, 
the effectiveness of parallel I/O prefetching depends on 
carrying out prefetches efficiently and moving data swiftly. 
The current I/O prefetching strategy uses an independent 
approach, where each process of a parallel application issues 
prefetches independently to move the required data in advance. 
We term this form of I/O prefetching as an independent 
prefetching strategy. In this study, we propose a new form of 
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I/O prefetching strategy, called collective prefetching. The 
rationale for collective prefetching is that the processes of 
many parallel applications have a strong correlation with each 
other with respect to I/O accesses. This correlation has been 
used to optimize parallel I/O performance in many strategies, 
such as collective I/O [16], one of the most critical 
performance optimization strategies for parallel I/O systems, 
data sieving, etc. We argue that taking advantage of this 
correlation is beneficial for I/O prefetching too: prefetching 
should be done in a collective way with global awareness rather 
an ad hoc individual and independent way. In the mean while, 
the traditional concerns with prefetching strategies, such as 
increased memory pressure, buffer cache pollution and 
increased communication congestion, have been remedied well 
by new technologies such as much larger memory at low cost, 
dedicated memory portions for buffer cache, and higher 
bandwidth and disk-level buffer cache. In this paper, we 
introduce a collective prefetching framework to the parallel I/O 
system. We illustrate the design of MPI-IO with collective 
prefetching functionality, and present the implementation 
strategy. Initial experimentation has shown the potential benefit 
of the collective prefetching. The primary goal of this research 
is to bring intelligent prefetching strategies to parallel I/O 
systems to improve the I/O performance for high-performance 
computing. 

II. COLLECTIVE PREFETCHING FRAMEWORK 
The fundamental idea of the proposed collective 

prefetching is to take advantage of the correlation among I/O 
accesses of multiple processes of the same parallel application 
and to optimize prefetching in a collective and global-aware 
way. The potential benefits of collective prefetching are three 
fold.  

• Collective prefetching can filter overlapping and 
redundant prefetch requests from multiple processes. As 
the system size increases, the likelihood of overlapping 
and redundant prefetch requests increases, especially 
when we consider petascale/exascale systems. These 
overlapping and redundant requests considerably waste 
limited I/O bandwidth. Filtering out redundant prefetch 
requests helps alleviate the bottleneck due to limited I/O 
bandwidth.  

• For many parallel applications, each process accesses data 
in a non-contiguous fashion in each iteration. However, 
when combining the demand I/O request in one iteration 
with the prefetch requests from future iterations, the 
aggregated request often comprises a contiguous data 
region. Furthermore, when combining the prefetch 
requests from multiple processes with the collective 
prefetching strategy, we can explore the possibility of 
contiguous data region across the entire application, 
making parallel I/O prefetching more efficient.  

• As with collective I/O, the collective prefetching strategy 
can reduce the number of parallel file system calls by 
combining small and noncontiguous requests from the 
same application iteration into large and contiguous ones. 
Furthermore, with collective prefetching, we can combine 
the prefetch requests with demand requests to improve the 
parallel I/O prefetching efficiency. The reduced number 
of system calls can decrease the system call overhead. 

Many parallel applications exhibit strong correlation among 
the I/O accesses of multiple processes [1][8][9][14][16], and 
this correlation has been well exploited for collective I/O 
design [16]. For instance, many parallel applications have 
processes that access data with the same and constant stride. 
Another representative example is that many parallel processes 
access the border of data array/matrix in an overlapping way 
and redundantly. In these scenarios, the proposed collective 
prefetching can be of great potential in carrying out parallel I/O 
prefetching in a better and more efficient way. 
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Figure 2.  Collective Prefetching Framework 

Figure 2 illustrates the high-level structure of the proposed 
collective prefetching framework. We introduce prefetch 
delegates that explore correlations among prefetch requests. 
The prefetch delegates find large contiguous data to prefetch by 
combining multiple prefetch requests and carry out prefetches 
collectively. For merging of multiple requests, we use the 
correlation to identify overlapped data accesses. With the 
global awareness brought by collective prefetching, we can 
also detect redundant prefetches among multiple processes, and 
utilize the precious bandwidth wisely. The implementation 
methodology of prefetch delegates is similar to that of 
aggregators in a collective I/O implementation, such as 
ROMIO [16]. The collective prefetching component directly 
interacts with the parallel I/O middleware/library to merge and 
filter prefetch requests, and interacts with the caching 
component to bring the prefetched data into the caching 
component. The regular parallel I/O library, where 
optimizations like collective I/O happen, interacts with the 
caching component to take advantage of the prefetched data in 
the cache buffer. If the requested data are not in the cache 
buffer, the parallel I/O library still requests the data via the 
underlying parallel file system. The caching component also 
interacts with the parallel file system to fetch data into the 
cache buffer. The parallel file system manages data on physical 
storage devices and provides data access to upper layer parallel 
I/O library and caching component via file system calls.  

III. MPI-IO WITH COLLECTIVE PREFETCHING 
In this section, we present the design and implementation 

methodology of providing collective prefetching at MPI-IO. 
We first briefly review MPI-IO, the ROMIO implementation of 
MPI-IO, and collective I/O optimizations in this section since 
collective prefetching at the MPI-IO layer is built upon them. 
We then introduce the implementation of collective prefetching 
in ROMIO at the MPI-IO layer. 



A. MPI-IO, Collective I/O and ROMIO 
MPI-IO defines an I/O access interface for parallel 

applications and is a subset of the MPI-2 specification [7]. The 
implementation of MPI-IO is usually a middleware connecting 
parallel applications and underlying various parallel file 
systems, providing the code-level portability across many 
different machine architectures and operating systems. The 
implementation of MPI-IO usually uses many features of MPI. 
ROMIO is a popular MPI-IO implementation [16]. It provides 
an abstract-device interface called ADIO for implementing the 
portable parallel I/O API. It performs various optimizations, 
including collective I/O and data sieving, for common access 
patterns of parallel applications [16]. 

Collective I/O is one of the most important I/O access 
optimizations for parallel applications. It stands in contrast to 
independent I/O, in which each process of a parallel application 
issues I/O requests independently of all other processes. 
Although independent I/O is a straightforward form of I/O and 
is widely used in many applications, this form of I/O is not 
recommended for parallel applications because it does not 
capture the complete data access information of a parallel 
application. This shortcoming makes the MPI-IO middleware 
loses the opportunity for optimizing I/O performance with the 
knowledge of multiple parallel processes.  With collective I/O, 
requests from all processes of a parallel application can be 
serviced together, allowing the middleware to take advantage 
of correlations between those requests.  
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Figure 3.  (a) Collective I/O and Two-phase Implementation. (b) Two-phase 
Read Protocol in ROMIO. The protocol consists of four steps: 1) each 
aggregator calculates the I/O requests span and exchange; 2) partitions the 
aggregated span into file domains; 3) each aggregator carries out I/O requests 
for its own file domain; and 4) all aggregators send data to the requesting 
processes, and each process receives its required data from corresponding 
aggregators that fetch the data on behalf of it. 

The most popular method of implementing collective I/O is 
a two-phase strategy (and its extension - generalized two-phase 
I/O [16]). This strategy separates the servicing of an I/O 
request into an I/O phase and data exchange phase (or 
communication phase). Figure 3 (a) shows the strategy of a 
two-phase collective I/O read for four processes, where two 
processes participate in the I/O phase (aggregators). The two-
phase I/O implementation has a first round of communication 
to let each aggregator know the aggregated span of the I/O 
requests of all processes. The implementation then partitions 
the aggregated span of requests into multiple file domains (FD) 
with each aggregator responsible for carrying out I/O requests 
for its own file domain. This phase is called the I/O phase. In 
the data exchange phase, each aggregator sends data to the 
requesting processes, and each process receives its required 

data from corresponding aggregators that fetch the data on 
behalf of it. Figure 3 (b) illustrates the collective I/O two-phase 
protocol in the ROMIO implementation.  

B. MPI-IO with Collective Prefetching 
Figure 4 illustrates the current design and prototype of 

collective prefetching in MPI-IO based on the existing 
collective I/O mechanism that is available in ROMIO and its 
internal implementation, ADIO. To simplify the design and 
implementation, we currently constrain prefetch delegates of 
collective prefetching to be same as aggregators in the existing 
collective I/O mechanism. Users can configure the number of 
aggregators/prefetch delegates (APD) and specify which 
processes to be the APD with user supplied hints. By default, 
all processes are aggregators/prefetch delegates. 
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Figure 4.  An Extended Collective I/O Two-phase Protocol in ROMIO for 
Collective Prefetching. The protocol is extended with four more steps: A. 
Maintain history; B. Predict; C. Place prefetched data; D. Check requests with 
cache buffer,  and one revised step, E. Calculate file domains and requests 
together with prefetch requests, to carry out collective prefetching.  

To provide collective prefetching at the MPI-IO layer, the 
two-phase protocol is extended with four more steps and 
revised within one step.  The four new steps are:  

A) All APDs maintain the past I/O request history. 
Currently, a history window of 8 is kept, which means the 8 
most recent I/O requests (offset and length lists) are kept in 
memory. The history window size can be tunable and can also 
be made configurable with user hints.  

B) All APDs generate prefetch requests based on 
predictions. In theory, any prediction, machine learning and 
data mining algorithm can be used here for generating 
prefetches. To simplify the initial experimentation and to verify 
the framework, we currently only provide a simple streaming 
and strided prediction algorithm. These patterns are common 
patterns observed in many scientific applications.  

C) All APDs place prefetched data in cache buffer. With 
collective prefetching, the extended two-phase protocol 
separates the fetched data into two categories: demanded data 
and prefetched data.  The demanded data are used to satisfy the 
demand requests; such data is moved to the user supplied 
buffer space when issuing the I/O function call. The prefetched 
data are kept in an internal cache buffer to satisfy future 
requests. We use collective caching proposed by Liao et al. [8] 
as the internal cache buffer. This code is implemented at ADIO 
layer within the ROMIO and maintains a global buffer cache 
among multiple processes at the client side. Each client 



contributes part of its memory to construct the global cache 
pool. We customize the collective caching for APDs instead of 
for all client processes.  

D) When calculating spanned request and exchanging data, 
the request is checked against the cache buffer. The data 
residing in the cache buffer are used to service I/O requests 
directly.  

E) The revised step is that when the file domain is 
partitioned and calculated, the prefetch requests are combined 
with demand requests to carry out collectively. In this step, the 
overlapping and redundant prefetch requests are detected and 
filtered. In addition, the prefetch requests of multiple prefetch 
delegates are combined and partitioned together with demand 
requests to form large contiguous accesses to improve the 
prefetching efficiency. 

 

Figure 5.  Collective Prefetching Algorithm with An Extended Collective I/O 
Two-phase Protocol 

Figure 5 explains the algorithm and the flow of collective 
prefetching at the MPI-IO layer. In the implementation, a 
prefetch queue (PFQ) is maintained for each prefetch delegate. 
This PFQ accommodates prefetch requests and is used to 
combine them with demand requests and to carry them out 
collectively. In addition, the requests are checked with the 
offset and length lists, and the overlapping and redundant 
requests are filtered out to improve prefetching efficiency and 
use I/O bandwidth wisely. The fetched data are either placed 
into the cache buffer if they are prefetched data to satisfy future 
requests, or are supplied to the process’ requests directly if they 
are demanded data. 

IV. PRELIMINARY EXPERIMENTAL RESULTS AND ANALYSIS 
The initial experiments were tested with a revised synthetic 

pio-bench benchmark [15]. The revision simulates both 
computation and I/O access behavior of parallel applications, 
and the original only characterizes I/O behavior. The original 
benchmark is usually used for measuring the peak I/O 
performance with different access patterns, while the revision 
is suitable for studying the sustained performance and the 
impact of different optimization techniques. The experiments 

were tested on MPICH2-1.0.5p3 release and PVFS 2.8.1 file 
system. The number of processes varied from 8 to 128 in each 
test. The number of APDs was configured as 8 in all tests. The 
total data size accessed was fixed as 16GB in each test. 
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Figure 6.  Speedup with Strided Access Pattern 

The experimental tests compared the sustained bandwidth 
with the standard MPI-IO library, collective prefetching and 
individual prefetching respectively. Figure 6 reports the 
speedup of the sustained bandwidth of collective prefetching 
and individual prefetching over the standard case respectively. 
These two figures cover two cases of the tests, the strided 
access pattern with 1MB and 4MB stride respectively. The 
sustained bandwidth was decreased as the number of processes 
was increased, which was found due to the reason of increased 
contention [4]. These tests showed that the collective strided 
prefetching outperformed the individual strided prefetching. 
The former outperformed the latter by over two fold on average. 
In addition, we observe that the individual strided prefetching 
is not as stable as collective strided prefetching – there is a 
decreasing trend of the individual prefetching speedup, while 
the collective prefetching combines prefetch requests, reduces 
the contention at a large scale and achieved stable speedup.  
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Figure 7.  Speedup with Nested Strided Access Pattern 

Algorithm cpf /* Collective Prefetching at MPI-IO */ 
Input: I/O request offset list, I/O request length list 
Output: none 
Begin 
1. Each aggregator maintains recent access history of 

window size w  
2. Aggregators/prefetch delegates run prediction or 

mining algorithms on all tracked global access 
history 

a. Algorithms can be as streaming, strided, 
Markov, or advanced mining algorithms 
such as PCA/ANN 

3. Generate prefetch requests and enqueue them in PFQ 
4. Process requests in PFQs together with demand 

accesses 
5. Filter out overlapping and redundant requests 
6. Perform extended two-phase I/O protocol with 

prefetch requests 
a. Prefetched data are kept in cache buffer 

to satisfy future requests 
b. Exchange data to satisfy demand requests 

(move data to user buffer) 
End 



Figure 7 reports the result of one of the tests with nested 
strided pattern with (1MB, 3MB) stride pair. It can be observed 
the trend is similar to the tests with strided patterns. The 
collective prefetching was more effective than individual 
prefetching and was able to achieve more stable improvement.  

V. RELATED WORK 
Many research efforts have been devoted at caching and 

prefetching optimizations for parallel I/O systems. Liao et al. 
proposed collective caching at MPI-IO layer to construct a 
global cache pool to enhance parallel I/O accesses performance 
[8]. Nisar et al. proposed to delegate a small set of compute 
nodes called I/O delegates to perform caching collectively, 
resolving caching coherence and reducing lock contention [10]. 
Vilayannur et al. proposed discretionary caching for parallel 
I/O to use compilation and runtime support to bypass caching if 
the caching hurts the performance [18]. Eshel et al. designed a 
cluster file system cache named Panache that exploits 
parallelism in many aspects of its design and has been proven 
effective and scalable as a parallel file system cache [6]. 
Several parallel or distributed file systems, such as PanFS [20] 
and Ceph [19], also provide client-side caching to improve file 
system performance. 

Prefetching algorithms, such as One-Block-Lookahead 
prefetching, sequential prefetching, stride prefetching, Markov 
prefetching, and distance prefetching, have been widely used 
for identifying patterns in memory accesses. Most of these 
algorithms can be applied to prediction problem in the parallel 
I/O domain also. Patterson et al. proposed informed prefetching 
strategy using compiler, runtime, and access pattern 
information [13]. Tran et al. proposed time series modeling to 
provide efficient adaptive prefetching [11]. Recently, a more 
aggressive pre-execution based prefetching, where a 
prefetching thread runs ahead of main computing thread to 
prefetch data, was introduced [5]. A signature based 
prefetching with post-execution analysis and runtime 
adjustment was introduced by Byna et al [3]. Blas et al. 
proposed multiple-level caching and one-level prefetching for 
Blue Gene systems based on ROMIO [2]. In this study, we 
propose collective prefetching to exploit the correlation among 
multiple processes, and to explore globally coordinated 
prefetching for parallel I/O systems, which has not been 
exploited in existing literature.  

VI. CONCLUSION AND FUTURE WORK 
With the tremendous advances in processor architectures 

and the computational capability, I/O has been widely 
recognized as the performance bottleneck for many 
applications. In this research, we propose a new form of 
prefetching specifically for parallel applications, called 
collective prefetching, to improve parallel I/O prefetching 
efficiency and to enhance parallel I/O performance. This 
investigation is motivated by the fact that existing I/O 
prefetching strategies are not coordinated even though parallel 
applications have correlation in their I/O accesses. Although 
existing parallel I/O strategies, such as collective I/O, two-
phase I/O, and data sieving, take advantage of the correlation 
and have been demonstrated to be beneficial in many scenarios, 
no studies have explored the correlation and optimization for 
I/O prefetching strategies. This research and the proposed 
collective prefetching strategy address the limitation of existing 

studies. It exploits the correlation among accesses from 
multiple processes of a parallel application and optimizes 
parallel I/O prefetching. This is a general idea that can be 
applied at many levels, such as the storage device level or 
server level.  In this study, we focus on the middleware level, 
i.e. the MPI-IO level. We will continue working on the 
investigation of collective prefetching at MPI-IO layer. In the 
future, we plan to investigate the potential of collective 
prefetching strategy at the server and storage level as well. 
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