AKIN: A Streaming Graph Partitioning Algorithm for Distributed Graph Storage Systems

Wei Zhang, Yong Chen, Dong Dai
Department of Computer Science, Texas Tech University

Abstract

- Many graph applications face the challenge of managing excessive and ever-growing graph data.
- A graph partitioning algorithm is needed to distribute graph data onto multiple machines as the graph data comes in.
- Existing graph partitioning algorithms either fail to work on streaming workloads, or leave edge-cut ratio to be further improved.
- Our novel graph partitioning algorithm - AKIN exploit the similarity measure on the degree of vertices in a streaming setting.
- Our evaluation shows that AKIN algorithm is able to further reduce edge-cut ratio while maintaining partition balance.

Application Scenarios

- Large Scale Social Network
- Gene Sequencing
- Protein-Protein Interaction Simulation
- Road Construction Simulation
- Data Mining on World Wide Web
- Other Large Scale Instant Graph Analysis

Methods

AKIN Data Structure

- AKIN data structure is a t^2-scale 2D table.
- Top t source vertices who have the largest number of neighbors will be maintained in this in data structure.
- Top t destination vertices who have the largest number of neighbors will be maintained for each source vertex.

On Edge Stream:

- We evaluate each edge in the edge stream to see if data migration is needed for increasing data locality.
- Every data migration has to be complied with partition size constraint.

On Vertex Stream

Algorithm 1 Determine partition P_i for arriving vertex v

1. $i \leftarrow h(v)$
2. If $i \in \{0, \ldots, k-1\}$ then
3. If not exists(s, P_i) then
4. assign v to P_i
5. end if
6. end if

Algorithm 2 Determine vertex migration for arriving edge (u,v)

1. $i \leftarrow h(v)$
2. If $(K_u \in P_i)$ or $(K_v \in P_i)$ then
3. $max_{score} \leftarrow 0$
4. end if
5. for all p such that $0 \leq p < k$ do
6. $x \leftarrow h(p)$
7. if $p > max_{score}$ and $x < _F(s, P_i)$ then
8. $max_{score} \leftarrow x$
9. $t \leftarrow p$
10. end if
11. end for
12. if $t \neq i$ then
13. migrate u and v to partitions P_t
14. $K_u \leftarrow _F(s, P_t)$
15. $K_v \leftarrow _F(s, P_t)$
16. end if
17. maintain reference key K_u at partition P_t
18. maintain reference key K_v at partition P_t
19. end if
20. end if

Pseudocode

References:

Acknowledgement:

This material is based upon work supported by the National Science Foundation under grant CCF-1409946 and CNS1338078.