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Abstract—Emerging scientific simulations on leadership class
systems are generating huge amounts of data. However, the
increasing gap between computation and disk IO speeds makes
traditional data analytics pipelines based on post-processing cost
prohibitive and often infeasible. In this paper, we investigate an
alternate approach that aims to bring the analytics closer to the
data using data staging and the in-situ execution of data analysis
operations. Specifically, we present the design, implementation
and evaluation of a framework that can support in-situ feature-
based object tracking on distributed scientific datasets. Central to
this framework is the scalable decentralized and online clustering
(DOC) and cluster tracking algorithm, which executes in-situ (on
different cores) and in parallel with the simulation processes,
and retrieves data from the simulations directly via on-chip
shared memory. The results from our experimental evaluation
demonstrate that the in-situ approach significantly reduces the
cost of data movement, that the presented framework can
support scalable feature-based object tracking, and that it can be
effectively used for in-situ analytics for large scale simulations.

Keywords-Scientific data analysis, scalable in-situ data analyt-
ics, feature-based object tracking

I. INTRODUCTION

Scientific simulations running at extreme scale on leadership

class systems are generating unprecedented amount of data.

To enable scientific discovery, the high amount of simulation

data has to be analyzed and understood by domain scientists.

However, the increasing gap between computation and disk

IO speeds makes traditional data analytics pipelines based

on post-processing cost prohibitive and often infeasible [1].

Storing entire datasets from the large scale systems running the

simulation to storage servers is becoming increasingly expen-

sive in terms of the time required as well as the energy costs

associated with data movement. Moreover, the efficiency and

scalability of subsequent analysis operations on the data are

also hindered by the cost of disks-based data I/O. This trend of

big simulation data is resulting significant challenges limiting

the ability of scientists to translate this data into insights, and

as a result, the impact of the simulations themselves. Clearly,

this required rethinking the analytics pipelines to incorporate

new approaches that are cost-effective and scalable. In-situ

data processing has recently emerged as a promising approach

which can effectively reduce data movement and data IO

overheads by placing analysis operations at the simulation

machines closer to where the data is being produced.

In this paper, we investigate this alternate approach that

aims to bring the analytics closer to the data using the in-situ

execution of data analysis operations. Specifically we explore

in-situ feature-based objects tracking in distributed scientific

datasets. In order to extract insightful information from the

large datasets produced by simulations over thousands of time

steps, scientists often need to follow data objects of interest

(i.e., features) across the different time steps, such as tracking

storm formation and movement in climate modeling simula-

tion, or identify burning regions in combustion simulations.

As a result, feature extraction and tracking is an important

technique for analyzing and visualizing scientific datasets.

However, most feature extraction and tracking techniques

operate offline by post-processing data dumped from the

simulation runs. Being able to perform such feature-based

analytics in-situ, i.e., concurrent with a simulation run, can

significantly increase the utility of these techniques and the

productivity of the simulations, and can also lead to better

utilization of expensive high-end resources.

However, performing in-situ feature tracking presents sev-

eral research challenges. First, it requires a distributed feature

extraction and tracking algorithm that operates on distributed

data. Second, it requires a programming and runtime system

that enables the mapping and execution of the simulation and

the data analytics codes on co-located processor cores and

asynchronously share data at runtime. Most existing in-situ

data analysis implementations employ an inline approach, i.e.,

the data analysis operations are embedded into the execution

path of main simulation process, for example, as function

calls. One major drawback of this approach is that simulation

would have to block and wait for the completion of the

in-situ analytics routine, which impacts the execution and

performance of the main simulations.

In this paper we present the design, implementation and

evaluations of a systems framework that can support in-situ

feature-based objects tracking for large-scale parallel simula-

tions. Central to this framework is the scalable decentralized

and online clustering (DOC) [2] and cluster tracking algorithm,

which executes in-situ, i.e., on different cores, and in parallel

with the simulation processes, and retrieves data from the

simulations directly and asynchronously via on-chip shared

memory. The framework also provides programming support

for composing in-situ “simulation plus analytics” workflows.

The results from experimental evaluation on the Lonestar

system at Texas Advanced Computing Center (TACC) demon-

strate that the in-situ approach significantly reduces the cost



of data movement, that the presented framework can support

scalable feature-based cluster tracking, and that it can be

effectively used for in-situ analytics for large scale simulations.

The rest of the paper is structured as follows. Section

II presents related work. Section III describes the system

architecture and implementation of the feature-based tracking

algorithm. Section IV presents an experimental evaluation of

the prototype system using 3D time-varying CFD dataset.

Section V concludes the paper.

II. RELATED WORK

In-situ scientific data processing: The increasing perfor-

mance gap between computing and I/O, and the cost of moving

large volume of data to/from disks, motivates computation

scientists to employ the in-situ data processing approach to

perform analysis, visualization [3], indexing building [4],

compression etc. The key idea is to move operations to data

where the simulation is running. However, existing inline

approach [5], [6] tightly integrate analysis or visualization

libraries into simulation code. Our techniques provides a more

a generic framework to compose and execute in-situ data

operations in a flexible and customizable way.

Staging area based in-transit data analysis and IO:

The data staging area, a set of additional compute nodes

allocated by users when launching the parallel simulations,

and the application of staging area has been investigated to add

values to simulation’s I/O pipeline in projects DataStager [7],

PreDatA [8], JITStaging [9], ActiveSpace [10], Glean [11].

Our techniques focuses on scheduling and running analysis

code in-situ to exploit increasing hardware parallelism and

intra-node locality, and can be integrated with these in-transit

approaches to perform hybrid data staging and analysis.

Features tracking of time-varying simulation datasets:

Many techniques have been developed by computer vision

community to extract, identify and track features. Silver et al.

[12] presented a semi-automatic volume tracking algorithm

to improve visualization of 3D time-varying CFD datasets.

Chen et al. [13] developed a parallel algorithm to analyze and

visualize in realtime the evolving features extracted from time-

varying simulation datasets. Our technique represents features

as clustered data points in a multi-dimensional information

space, and identifies and tracks the data clusters of interest in

a distributed and timely manner using DOC.

III. DESIGN AND IMPLEMENTATION

A. Overview of System Framework

The system architecture of the proposed distributed data

analysis framework consists of three main components, the

execution client, in-situ data staging daemon and the man-

agement server. Each execution client abstracts and represents

a basic computation element such as a physical processor

core. The management server acts as the rendezvous point

to bootstrap execution clients, and manages the execution of

various applications within the in-stiu data analysis workflow.

Figure 1 shows co-located execution of DOC workers with

the simulation program, where the physical processor cores on

the multi-core compute nodes are functionally partitioned. As

shown in the figure, on-node computation resource is mostly

used by the scientific simulation program, and two processor

cores are used to execute in-situ data staging daemon and DOC

worker. The in-situ data staging daemons across the distributed

cluster nodes build a Co-located DataSpaces (CoDS) [14],

which provides a virtual shared-space abstraction to support

asynchronous and decoupled coordination and data sharing

between simulation processes and the DOC worker. The

capability of functional partitioning of node-level processor

cores, and the programming model and runtime to support

asynchronous communication between the intra-node cores, is

critical to exploit the ever-increasing hardware parallelism on

emerging supercomputers.

Our framework employs the data-centric scheduling ap-

proach to map processes from different applications onto

physical processor cores so that a large portion of the inter-

application data transfers can be performed using the on-node

shared memory. More specifically, two mapping methods -

both centralized server side and decentralized execution client

side - are designed in the framework. The server side mapping

is applied to a “bundle” of concurrently coupled component

applications that are launched simultaneously, have regular

inter-application communication patterns and do not need

dynamic re-mapping after launch, which matches with the

“simulation plus DOC” scenario described in this paper. The

execution client side approach schedules the newly launched

workflow application that have dependency on the distributed

data generated by preceding application. More details about

the data-centric mapping is discussed in [14].

B. Feature-based Objects Tracking through DOC

1) Decentralized Online Clustering (DOC) and Feature

Extraction: One method of identifying objects in scientific

simulations is through data point clustering. Clusters can

represent subsets of interest in a dataset, for example a flame

or region of chemical reaction in a combustion simulation.

The nature of data creation in scientific applications, as

well as other applications, require specialized clustering algo-

rithms.In this paper we use Decentralized Online Clustering

(DOC) which was created to provide online and decentralized

data analysis using the collective computing resources in
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Fig. 1. Architecture of the in-situ feature extraction and tracking system.



distributed systems. DOC’s decentralized programming can

reduce overall data transfer cost by its novel clustering work-

flow, where individual nodes are assigned a specified region

of space to analyze. A complete explanation of DOC is

done by Quiroz [15]. To summarize DOC workers run on

each computational node and identify local clusters These

workers then communicate with neighboring workers and

merge clusters iteratively. DOC can maintain data locality in

certain configuration and thereby remove the need to aggregate

data.

As part of our work DOC has been modified to extract clus-

ter feature that can later be used to uniquely identify objects

across time. Identified clusters in a dataset contain metadata

or cluster features which can be extracted in order to describe

the cluster. These features describe the data points which form

the cluster (e.g., location, density, etc.). Cluster feature are

collected within DOC itself leveraging the information used to

cluster the data. As will be explained in section III-B2 cluster

features can be used to uniquely identify a cluster.

2) Cluster Tracking Using Recursive Clustering: When a

collection of cluster features have been gathered over time,

the clusters they describe can be tracked by comparing the

features to one another. By using a clustering algorithm as

the mechanism to compare cluster features to another another

it is possible to reuse DOC and create a two step clustering

process to identify objects and tracks them. This is possible if

cluster features are sufficiently similar from one point in time

to the next that they can be assumed to correspond to the same

cluster. As an example Figure 2 is provided where three clus-

ters at different points in time have their centroids collected

and subsequently had their centroids clustered through DOC.

As can be seen the three centroids cluster with one another

and conclude that based on this information the three clusters

are in fact the same cluster at different times. As explained

by Lasluisa [16], clusters can be identified and tracked by

their features through a comparison of one cluster’s features

to another cluster’s feature at different points in time.

C. Composing in-situ data analysis workflow

One important idea of the proposed framework is to support

building in-situ data analysis as a tightly-coupled workflow.

Two problems need to be solved regarding the programma-

bility: First, how to specify the control flow; Second, how to

program the coordination and data communication between

the interacting workflow applications.

The tightly-coupled application workflow is expressed as

a DAG, where each vertex in the DAG represents a parallel

Fig. 2. Example of how cluster centroids (a cluster feature) can be used to
track a cluster’s movement

program. Our DAG representation extends traditional DAG

representation such as DAGMan used in the workflow engine

Pegasus, with the concept of a “bundle” which represents a

group of parallel programs that need to be launched simulta-

neously, for example, the simulation and DOC programs of

our in-situ feature extraction and tracking scenario. The edges

of the DAG represent the control flow. The DAG as well as

the bundles are explicitly defined by users. Figure 3 presents

the DAG representation for our simulation plus DOC appli-

cation workflow, and the user-generated DAG description file

which is then parsed by the management server. Each parallel

program in the DAG is identified by a unique application id

in the description file.

Components in the application workflow coordinate and

communicate with each other through the abstraction of a

shared data space - CoDS. In our in-situ feature extraction

and tracking scenario, the DOC workers (data consumer)

need to continuously access scientific data computed by the

simulation (data producer). To implement this, each process

of the simulation program specifies a descriptor as the key for

its data, and inserts the data into CoDS using collective put()

interface. Each DOC worker generates the query key, and uses

the get() interface to retrieve data of interest. More specifically,

DOC workers use the interface get local() to only retrieve

simulation data produced on local machine. One assumption

for our framework is that the interacting workflow applications

share the knowledge about the data, such as type of key,

data name and format. Figure 4 shows a logical view of data

interaction through shared data space.

IV. EXPERIMENTAL EVALUATION

The prototype implementation of our framework was evalu-

ated on the Lonestar linux cluster at Texas Advanced Comput-

ing Center (TACC). The Lonestar has 1,888 compute nodes,

and each compute node contains two hex-core Intel Xeon

processors, 24GB of memory and a QDR InfiniBand switch

fabric that interconnects the nodes through a fat-tree topology.

The system also supports a 1PB Lustre parallel file system.

A. Performance of Data Transfer

This section evaluates the end-to-end data transfer perfor-

mance, and more specifically the time used to transfer data

from simulation processes to DOC workers, for both our in-

situ memory-to-memory and the disk IO approaches. In this

SIM DOC

DOC: decentralized online clustering code

SIM: parallel simulation code

bundle-1

Scenario:

In-situ Feature Extraction and Tracking

# In-situ Data Analysis Workflow

# Simulation code has appid = 1

# DOC code has appid = 2

# Bundle is specified by IDs of

#  its applications

APP_ID      1

APP_ID      2

BUNDLE    1      2

description file

Fig. 3. Example of workflow DAG representation and description file.
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Fig. 4. Simulation and DOC workers share data through data space
abstraction.

case, we use a testing MPI program as the parallel data

producing simulation, which runs on a set of m processor

cores. The parallel DOC workers runs on a separate set of n

processor cores where the ratio of m:n is 10. In our in-situ data

analysis approach, each DOC worker runs on a processor core

co-located with 10 simulation cores of the same compute node,

and retrieves data generated by the 10 intra-node simulation

processes through CoDS get local() interface. In the disk IO

approach, simulation processes dump data to disk with the one

file per process method using binary POSIX IO operations.

Data files are then read by parallel DOC workers. For this

evaluation, the number of simulation processes m is varied

from 50 to 800, and the size of data produced per simulation

process at each timestep is varied from 1MB to 64MB. The

testing program is configured to run for 100 timesteps at each

data output size.

Figure 5 and 6 compares the performance of the two

evaluated end-to-end data transfer approaches. As shown in

Figure 5, our in-situ memory-to-memory method is much

faster than the disk IO approach, with average speedup of

transfer performance as about 5. Also, the in-situ memory-to-

memory method is scalable, and shows no performance degra-

dation when the number of MPI processes in data producing

program increases from 50 to 800. The reason accounts for

this significant performance gain is that all data movement is

intra-node, and performed through the on-node fast IO path

- shared memory. But for the disk IO approach, both data

producer and DOC worker processes have to use the off-node

slow path - disk. Figure 6 illustrates the performance gain

from another dimension - aggregate data transfer throughput.

The fast intra-node shared memory approach enables much

higher aggregate bandwidth for the data movement between

simulation and DOC.

B. Effectiveness of the Feature-based Cluster Tracking Algo-

rithm

This section evaluates the effectiveness and accuracy of our

proposed feature tracking algorithm, using time-varying 3D

dataset. The dataset is generated by simulation of coherent

turbulent vortex structures with 128
3 resolution (vorticity

magnitude) and 100 time steps. In this case, the data cluster

or object of interest is defined as thresholded connected voxel

regions. These regions evolve both in location and shape
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during the simulation. Though different time steps of the

dataset can be visualized offline using visualization tool such

as Visit, it is difficult to visually observe and accurately

follow regions of interest. The tracking information from our

algorithm is used to determine how the regions evolves, e.g.,

size, location, density, over the time steps.

In this experiment, we define the volume regions of interest

as data points clusters that with vorticity values in the range

of 9 to maximum. Figure 7(a) shows three selected time steps

of the visualized dataset, and we demonstrate the effective

tracking of the evolving volume region (or object as in

DOC) pointed by black arrows. For this experiment we define

Tracking accuracy as the ratio of data points encompassed by

the tracked objects to total number of points in the experiment.

This insure that high accuracy can only be achieved by

identifying paths which pass through In each experiment to

test accuracy 50 frames were used to identify the paths of

the objects within these 50 frames. The tracking accuracy

average across 47 tests was 92.28%, meaning only 7.72% of

all vortex points were not associated to any trackable object

in our experiments. In Figure 7(b) we present the tracking of

a object (the same one as in visualized Figure 7(a)), as seen

by DOC, at 3 different time steps. As can be seen this object

is moving from left to right and shrinking in size.
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(a) A visualized view of the evolving volume regions (objects) tracked by our feature-based tracking
algorithm.

(b) Illustration of tracked path for object
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Fig. 7. Experimental results

V. CONCLUSION AND FUTURE WORK

This paper explored the in-situ execution of feature-based

objects tracking of time-varying scientific simulation data.

Specifically, we presented a feature-based cluster tracking

algorithm which builds on DOC and uses it to process data in a

distributed and timely manner. We also presented Co-located

DataSpaces, a framework and its programming interface, to

compose and run tightly coupled workflow applications in-situ.

We evaluated the proposed approach on the Lonestar cluster

at TACC using a number of experiments. The experiments

measured the end-to-end data transfer performance as well

as the effectiveness and accuracy of our cluster tracking

algorithm.

Our direction for future work includes extending the decen-

tralized in-situ cluster tracking system for other application

areas such as online monitoring of resource utilization and

anomaly detection in large scale data center. We will also

explore the use of on-node NVRAM/SSD storage to support

energy-efficient in-situ staging of large data sets which could

not simply stored in current on-node memory.
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