A Software-Defined Approach for QoS Control in High-Performance Computing Storage Systems

Neda Tavakoli1, Dong Dai1, John Jenkins2, Philip Carns2, Robert Ross2, Yong Chen1

1Department of Computer Science, Texas Tech University,
2Mathematic and Computer Science Division, Argonne National Lab

Abstract

- **Objectives**
 - To meet the Quality-of-Service (QoS) requirements for HPC platforms
 - To propose a flexible and effective storage system using software-defined approach to assure a certain level of resources per application

- **Background**
 - The ability to guarantee a certain level of performance is called QoS support
 - As larger storage systems are using, multiple applications which are sharing the same storage systems, will compete and interfere with each other
 - Application interference dramatically degrades the overall system performance

- **Contribution**
 - We proposed a flexible solution to achieve soft QoS storage guarantees using software-defined approach
 - We proposed borrow model and policies to meet QoS requirements

Proposed Architecture

- We propose to use software-defined technique as Figure 1 shows
- Two key software-defined components are added into HPC storage system to enable a flexible QoS provisioning
 - **Data plane**: It is running on each storage server for IO classification and bandwidth shaping
 - Data plane contains multiple queues, each of which buffers requests from a given application.
 - IO classification is done based on the IO header
 - **Control plane**: The control plane consists of the several components
 - **Token Rate Generator**: It communicates with the Desired QoS component in data plane to sync the requested bandwidth specification of each application and generates a token rate per application
 - **Virtual Token Buckets**: It learns the token rate from token rate generator to operate
 - **Traffic Shaper**: It communicates with the virtual token buckets to get information to shape the traffic
 - **Policy Enforcer**: It is used to deliver policies to meet the QoS requirements

Proposed Solution

- **Proposed Software-Defined Solution**
 - Based on the software-defined architecture, we propose several key improvements:
 - We introduce borrowing model which allows a queue of one application to borrow tokens from queues of the same application in other storage servers.
 - We extend the original M-LWDF algorithm in conjunction with the borrowing model. The extended M-LWDF is used to guarantee the fairness during degradation
 - We design a set of policies regarding the borrowing model, including whether the borrow can happen and when and how many tokens should be borrowed.

References

