OpenSoC System Architect: An Open Source Supercomputing Platform

Farzad Fatollahi-Fard
David Donofrio
John Shalf
{ffard, ddonofrio, jshalf}@lbl.gov
Lawrence Berkeley National Lab

John Leidel
Xi Wang
Yong Chen
jleidel@tactcomplabs.com
{xi.wang, yong.chen}@ttu.edu
Texas Tech University

Motivation

- The idea of SoCs is starting to be applied to HPC, building chips from IP building blocks.
- Commercial, closed-source IP is a major drag on innovation in all technology spaces. Open-source hardware has the potential to ignite multiple paths in the semiconductor industry: increasing diversity by driving costs down, lowering the barrier to entry, and opening the door for customization.
- New companies are being founded based on open source.

Software Infrastructure

Programming Models

- The programming model relies on a RHIP approach where a single host (ARM A64) application will launch multiple RISC-V threads. Each RISC-V thread may have additional, extended instruction support for application-specific computing workloads.

Hardware Architecture

Tiled Architecture

- Each tile will contain the open source RISC-V based Rocket core with a custom Personal Memory Engine (PME), connected to an OpenSoC Fabric network.

Configurable Network

- The tiles will be arranged in a mesh networking using the open source OpenSoC Fabric, with a node for a connection to main memory and off-chip communication.

Overview

Instruction Set Extensions

- Black Box Modules

CHISEL

- Chisel Modules

OpenSoC System Architecture

- We'd like to acknowledge the Laboratory for Physical Science and the Department of Energy for helping fund this work.

For further reading, please visit our website: opensoc.community