Block2Vec: A Deep Learning Strategy on Mining Block Correlations in Storage Systems

Dong Dai¹, Forrest Sheng Bao², Jiang Zhou¹, and Yong Chen¹

¹Dept. of Computer Science, Texas Tech University, Lubbock, Texas, {dong.dai, jiang.zhou, yong.chen}@ttu.edu
²Dept. of Electrical and Computer Engineering, University of Akron, Akron, Ohio, forrest.bao@gmail.com

Abstract—Block correlations represent the semantic patterns in storage systems. These correlations can be exploited for data caching, pre-fetching, layout optimization, I/O scheduling, etc. In this paper, we introduce Block2Vec, a deep learning based strategy to mine the block correlations in storage systems. The core idea of Block2Vec is twofold. First, it proposes a new way to abstract blocks, which are considered as multi-dimensional vectors instead of traditional block IDs. In this way, we are able to capture similarity between blocks through the distances of their vectors. Second, based on vector representation of blocks, it further trains a deep neural network to learn the best vector assignment for each block. We leverage the recently advanced word embedding technique in natural language processing to efficiently train the neural network. To demonstrate the effectiveness of Block2Vec, we design a demonstrative block prediction algorithm based on mined correlations. Empirical comparison based on the simulation of real system traces shows that Block2Vec is capable of mining block-level correlations efficiently and accurately. This research and trial show that the deep learning strategy is a promising direction in optimizing storage system performance.

I. INTRODUCTION

In the Big Data era, the performance of storage systems has become increasingly important. High-performance distributed file systems have drawn increasing attention for both high-performance computing and cloud computing platforms [1, 2, 3, 4]. Although in distributed file systems, factors like data placement [5], metadata management [6], fault tolerance [3], and scheduling [7] all affect the overall performance, the I/O requests will eventually arrive at individual disks at the backend storage servers, and rely on their performance to deliver an overall optimal performance. Hence, to achieve the best I/O performance in distributed and parallel file systems, block-level access in local disks should be optimized as well.

It is acknowledged that the correlations between disk blocks are critical to the improvement of storage disk performance [8, 9, 10]. The correlation can be used for re-organizing data blocks to maximize the sequential access [11, 12], prefetching blocks to reduce I/O latency, or increasing the cache-hits [13, 14]. The capability of being able to detect the correlations between blocks and use them to direct local storage optimization is important to not only local systems but also large-scale distributed systems.

The correlations between blocks in storage systems come from several sources. First, the sequential blocks are more likely to be accessed together (i.e., the locality principle [15]), indicating close correlations among them. Second, applications may introduce temporal correlations among blocks that are not physically close to each other. For example, the B-tree or B*-tree data structures in database systems will introduce continuous accesses between blocks that store parent nodes and child nodes. The Ext3 or Ext4 file systems also introduce temporal correlations between blocks where the file data is stored and the blocks the corresponding inode [16] is stored. Last but not the least, multiple applications that interact with each other also introduce block correlations. Such applications commonly exist in a form of workflow.

As correlated blocks tend to be accessed relatively close to each other in an access stream, it is possible to detect them by analyzing the block access stream. Generally, there are two types of block access streams, at application-level and at system-level. The application-level access stream is collected in a per-application way, and a system-level access stream is collected at the system level as a reflection of data accesses from all applications and even the operating system (OS) itself. In this research, we focus on the system-level access stream for several reasons. First, system-level block accesses are easier to collect compared to per-application block access collection, as applications access data at the file level, which needs to be mapped to blocks and also differentiated from other applications and the OS. Second, system-level streams are more accurate in terms of the access order than application-level streams, because they are not affected by operating system I/O scheduling. Third, system-level access streams can further reflect the correlations generated from interactions among applications and can be more useful to optimize the storage system.

Given a continuous block access stream at system level, the objective of this research is to infer accurate block correlations based on access context. In fact, there has been a large number of research efforts focusing on this specific or relevant problem. The probability graph [17, 18] was designed to record the access closeness of blocks as a graph, whose edges denote how many times two blocks are shown together. Such graph can be further used to predict next IO access based on the current one. Semantic distance [12] leverages the knowledge of how the file system uses the disk system including on-disk data structure to infer relationship of blocks. Small artificial network, which contains 13 input units, 10 output units, and 12 units in the hidden layer, was proposed in [19] to learn the sequence of I/O accesses. The Markov model and Hidden
Markov Model [20] abstract the access sequence as a series of changing states and use them to predict next possible access. Pattern signatures [21, 22] were used to capture application signatures based on their I/O behaviors. Some complex data mining algorithms, especially frequency mining, were also proposed to mine the frequent patterns in I/O access traces for correlations [23, 24].

In this study, we propose Block2Vec, a deep learning (DL) based strategy that applies advanced deep learning technique to efficiently and accurately mine the block correlations from large-size block access streams. The core idea of Block2Vec contains two aspects. First, we propose a new way to abstract disk blocks as multi-dimensional vectors instead of traditional indexes to better abstract their features. Second, we propose to train a deep neural network to learn the best vector value for each block by training on real-world block access traces. The training algorithm is inspired from a word embedding algorithm called word2vec [25, 26]. To the best of our knowledge, Block2Vec is the first approach to leverage the deep learning techniques into block correlation mining. It is also the first study that models disk blocks into high-dimensional vectors instead of consecutive, single dimensional block indexes. We conduct extensive evaluations through a common use case, disk access prediction, to analyze the benefits of exploiting block-level correlations via the newly proposed approach. Compared to existing block correlation detection algorithms including sequential prediction (SP) and probability graph (PG), Block2Vec achieves impressive and stable prediction accuracy with a low overhead. These evaluations based on real-world I/O traces also confirm that Block2Vec is able to run efficiently with reasonable resources as an effective block correlation mining method for modern storage systems.

The rest of this paper is organized as follows. In Section II, we introduce the core ideas of this research study: a generic model for mining block correlations, which contains a statistical block access model and a new vector-based representation of disk blocks. In Section III, before discussing the detailed design and implementation of proposed approach, we give a brief introduction of DL techniques and the highly relevant word embedding tasks in natural language processing (NLP). In Section IV, we present the detailed design and implementation of Block2Vec. In Section V, we further introduce a simple correlation-based block prediction algorithm as an application of block correlation and also used it as evaluation metrics in later section. Section VI presents our experimental results. Section VII concludes the paper and discusses future work.

II. GENERAL MODEL FOR MINING BLOCK CORRELATIONS

A. Statistical Block Access Model

It is observed that correlated blocks are accessed close to each other because of their data relevance. Therefore, if two blocks are almost always accessed together within a short time interval, it is very likely that these two blocks are correlated to each other. In other words, it is possible to automatically infer block correlations in a storage system by analyzing the access stream. This observation plays the foundation of mining block correlations. However, it is not trivial to quantitatively measure such correlations from this intuitive observation. The similar problem also exists in NLP (natural language processing), where similar words also show in the similar context or closely with each other, e.g., “Obama” with “President”. To be able to quantitatively measure such word similarity, statistical language model [27] is proposed and widely used. Inspired by the statistical language model, we propose to use statistical model to describe the block accesses in this work.

The statistical model describes the probability of a block, say b_i, being the next one to be accessed, given an existing block access sequence, say $\{b_1, b_2, b_3\}$, and the next one, say $\{b_1, b_2, b_3, b_4\}$, which can be mathematically calculated as the conditional probability of sequence $\{b_1, b_2, b_3, b_4\}$ given $\{b_1, b_2, b_3\}$. In this way, mining block correlation can be considered as building a statistical model to estimate the probability of a certain group of blocks. The larger the probability is, the closer the group of blocks are. For example, if $P\{b_4|b_3\} = 0.9$, then we know that b_3 and b_4 are closely correlated.

In a formal description, the statistical model of block access calculates the probability that a given block sequence appears. This can be calculated based on the probability of each block and its conditional probability in the sequence as follows.

$$P(b_1, \ldots, b_m) = P(b_1, \ldots, b_{m-1}) \cdot P(b_m|b_1, \ldots, b_{m-1})$$

$$= \prod_{i=1}^{m} P(b_i|b_1, \ldots, b_{i-1})$$

Here, each conditional probability can be calculated by counting corresponding access pattern based on given block access traces. However, as a block access sequence can easily contain many blocks, it will quickly become impractical to compute such a value. We can approximate it by only considering a fixed number of preceding blocks, for example n. This approximation is widely used in statistical language model too, known as the N-gram [28]. In this case, the probability of observing a block sequence b_1, \ldots, b_m is given as:

$$P(b_1, \ldots, b_m) = P(b_{m-n+1}, \ldots, b_{m-1}) \cdot \prod_{i=1}^{m} P(b_i|b_{i-n+1}, \ldots, b_{i-1})$$

Here, it is assumed that the probability of observing the i-th block b_i in the context history of $i-1$ preceding blocks can be approximated by the probability of observing it in the shortened context history of the preceding $n-1$ blocks (n-th order Markovian property). With the capability of calculating such probability for any block sequence, we can find block b_m with the maximal likelihood of forming the entire sequence and choose it as the next prediction.

As we have described, it is not difficult to observe that the statistical block access model is similar to its natural language cousin, the statistical language model, which is a
probability distribution over sequences of words. In fact, such similarity behind these two fields comprises the rationale and motivation of this work. In this research, for the first time, we explore applying those techniques, used to build statistical language model in NLP, onto block correlation mining for storage systems.

B. Vector Representation of Blocks

Most existing block correlation detection strategies treat each block as an atomic unit and represent them as indexes in the total physical blocks (e.g., block Id b_i). Such representation is similar to “one-hot” representation [29] in NLP. In this way, mining block correlation becomes learning the similarity between two unique integer Ids based on block access sequences. This representation of blocks is simple and straightforward, but it has several limitations. First, the representation itself (e.g., block Id) does not contain the notion of correlation similarity as they are just integer indexes of blocks, indicating the location of blocks. For example, even block b_1 and b_{200} are closely correlated, their representations ($1, 200$) can not show it. Second, it suffers the curse of dimensionality problem [30]. Specifically, as a storage system usually contains a large number of blocks, the number of all possible sequences of block accesses will increase exponentially with the size of the blocks. This indicates a huge number of combinations of values (i.e., block accesses) that must be discriminated from each other by the pattern mining algorithm, which significantly increases the computation complexity.

In this research, for the first time, we propose to use a vector instead of an index to represent a block. It will associate each block with a continuous-valued vector, instead of only representing the physical location through a block Id. The vector representation has two obvious advantages.

First, the vector actually indicates a tuple of features that characterize the block. Once the vector representations are assigned to blocks, each block corresponds to a point in a high-dimensional feature space. One can imagine that each dimension of that space is related to a characteristic of the block. For example, the physical location of block, the file it belongs to, the user who owns the file, the creation time, the access time, etc. The rationale is that the correlated blocks will get to be closer to each other in that space. In this way, a sequence of block accesses can thus be transformed into a sequence of these feature vectors, which can be efficiently learned by a deep neural network.

Second, the vector representation allows the model to generalize the access sequences that have not yet shown in the existing block access history, but are similar to existing ones in terms of their features, i.e., their vector representations. For example, assume that the vector representations of blocks b_1 and b_{10} are similar, and those of b_2 and b_{20} are also similar. In the block access history, the sequence of (b_1, b_2) occurs multiple times and is always followed by b_3. Later, if we see the sequence (b_{10}, b_{20}), which never occurs in history, using their vector representations can help generalize them to the known sequence (b_1, b_2) and help make a prediction about next visit, b_3 or a block similar to b_3. The ability of generalizing block access sequences into combinations of high-dimensional vectors will significantly alleviate the problem of the curse of dimensionality as many different combinations of block accesses are merged into similar vectors.

The vector representation of blocks can be trained through a neural network [29]. But, it still indicates a high computational complexity, to train on large number of block accesses. For example, a normal 1TB disk may contain billions of blocks (4KB block size). Recently, in NLP, new architectures and training models have been proposed to reduce the complexity of training a complex neural network on large datasets [25, 26]. This plays a foundation for our research. In the next section, we will give a brief introduction on the deep neural network and the progress in NLP before describing our proposed block correlation mining approach.

III. DEEP LEARNING AND WORD EMBEDDING

Deep learning is a rapidly emerging machine learning technique originally proposed as an extension to traditional artificial neural network (ANN) [31]. The word “deep” comes from not only the fact that such an extended ANN normally has multiple hidden layers forming a deep hierarchy as compared to traditional ANN, but also its capability to perform complicated transformations to reach a high-level abstraction of the data. Numerous research results have shown that DL, compared with traditional neural networks, can build much more accurate and robust models. Therefore, DL is currently being widely used in many fields including NLP. One of the most exciting uses of DL in NLP is word embedding [32], which maps words to high-dimensional vectors of real numbers by training a deep artificial neural network [29]. Representing (i.e., embedding) sparse objects (e.g., words) into vectors makes many tasks convenient. For example, the similarity or correlation between two objects can be calculated by the cosine of the angle between the two corresponding vectors.

![Fig. 1. A neural network example for calculating word embedding for English words (e.g., top 50,000) by solving the “filling-the-blank” problem. The training is done by using numerous 5-word sequences, e.g., “the cat sits on mat”, from English text. The input is 4 words in the 5-word sequence except the middle word, e.g., “the cat ___ on mat”. Each neuron in the output layer corresponds to one of the n words. A correct prediction will yield the highest probability for the word “sits”. A wrong prediction will trigger the neural network to update vector representation of words and the weights between neurons.](image-url)
Fig. 1 shows an example deep neural network that can generate the embedding value for each word by training on a set of word sequences, such as “the cat sits on mat” or “a boy eats his dinner”. In the input layer, each word is a high-dimensional vector connected to the hidden layer. The hidden layer normally applies a simple operation, e.g., summation, on all vectors from the input layer and sends results to output layer. The output layer is huge as it contains all the words in the vocabulary. The training rationale is straightforward. For any given training sequence, we know the expected word, which should have the maximal possibility in the output layer. If the hidden layer yields a word other than that, the weights and vectors will be updated by back-propagation [33]. Afterwards, the updated vectors of input words will be copied to the output layer. In this way, a network can be trained to both predict the possibility of word and generate accurate vector representation for each word.

Training such a neural network for the accurate vector representation of words is an active research topic [34] in NLP with broad applications, such as machine translation [35, 36] and sentiment analysis [37]. Word2Vec [25] is a representative one due to its optimized network architecture and training models, which save huge amount of computation.

In this study, inspired by word embedding, we propose to use high-dimensional vectors to represent disk blocks. By leveraging recent progress of deep learning, we proposed Block2Vec to accurately mine the block correlations.

IV. BLOCK2VEC DESIGN AND IMPLEMENTATION

In this section, we introduce the design and implementation of Block2Vec, a deep neural network based solution to learn the vector representation of blocks from a sequence of block accesses. The distance between those vectors can indicate the block correlations. We will describe the data pre-processing, the neural network architecture, the training algorithm, and discuss its efficiency in this section.

A. Data Pre-Processing: Cutting Window

The first challenge of training a deep neural network for mining block correlation is the training set. The system-level block access sequence is a continuous sequence of accessed blocks without any boundary. We are not interested in the correlation of two blocks distant from each other in terms of access time. From a storage system’s point of view, it is much more interesting and useful to consider block accesses that are not far apart. To address this, in Block2Vec, we use access distance to divide continuous block access trace into multiple closely related block accesses. Specifically, we examine how far two continuous block accesses depart by measuring the time elapsed between them. We set a maximal threshold for such distance, denoted as cutting window max_{win}. Once a block access happens later than max_{win} after the previous one, we consider a new “sequence” has started. In this way, the history block access trace is sliced into size-variant shorter sequences. Each sequence contains accesses that are temporally related.

Fig. 2 illustrates how the access sequence abcd is divided into separate block sequences with $max_{win} = 5$. Note that the time interval is calculated based on two continuous block accesses, not from the start of the sequence. For example, accessing d is 6 intervals after visiting a, but they are still in the same sequence because it is only 5 intervals later than visiting its previous b. In this way, it is possible that a single block sequence contains a large number of block accesses. In real-world block traces, the maximal time difference max_{win} is measured in milliseconds and its best value is based on the usage of the block correlations. For read-ahead pre-fetching, max_{win} should be relatively small to cover the closest related block accesses only. For data re-organization, the max_{win} can be relatively large to find more subtle correlations to structure the data blocks. In this study, we set $max_{win} = 1000 ms$ except otherwise noted.

B. Data Pre-Processing: Block Access Translation

After splitting the single sequence of block accesses into multiple relevant sequences, the next challenge is that each block operation may access various sizes of data. Fig. 3 shows a piece of real-world block trace snippets from MSR-Cambridge trace [38] (detailed description of such trace is in Section VI). Here, the 6th column shows the size of each block access in Bytes. We can see different access sizes across those items (specifically marked with red boxes): some of them are 4096 (indicating a whole 4KB block access), some are smaller (e.g., 1536 Bytes), and some are much larger (e.g., 32768 Bytes). Other block-level I/O traces have the similar property.

For large I/O operations, we use an aggregated way to translate them, in which only one block Id is included in the final sequence no matter how many bytes are read from that block. Thus, each block access is actually considered as an object access, whose data accesses may vary in size.

In addition, a system-level I/O trace contains both read and write operations as shown in Fig. 3. In Block2Vec, we train the neural network using both because both operations reflect the correlations of blocks, which actually come from
the data stored on them. We differentiate them by appending an operation bit at the end of their identifications. For example, the “Write” on block 579637248 is translated to 579637248W and the “Read” on the same block is translated to 579637248R. This also helps future prediction. By splitting them, we are able to predict next block to be read or written, which is important for different use cases. For example, only future reads need to be pre-fetched, but both read and write are important for data re-organization.

C. Block2Vec Neural Network Architecture

Block2Vec leverages deep neural network to learn the vector representation of blocks. Its neural network architecture is shown in Fig. 4. Each time, it takes k (called the context window) recent block accesses as the training set. As described, each block is represented as an n-dimensional vector \([v_1, ..., v_n]\). All input vectors are connected to the hidden layer. The hidden layer sums all input vectors into a single vector. Each dimension of such vector connects to the output layer, which, similar to work2vec, is a Huffman tree. The connections are built between each dimension of the vector to each node on the Huffman tree.

![Neural network architecture of Block2Vec.](image)

The Huffman tree is built from a full scan of the entire block accesses. All nodes have different path lengths to the root of the tree depending on their occurring frequencies. While building the Huffman tree, the frequency of each block is recorded for an elimination procedure later. Infrequent blocks of fewer than \(\text{min}_f\) occurrences are ignored as correlations involving these rarely accessed blocks are considered not stable. For example, if a block is only accessed once in the whole trace, it will not be persuasive to make a conclusion that it is correlated with other blocks. The blocks not filtered out are called active blocks. To be analyzed in Section IV-E, the number of active blocks significantly affects the computation complexity of Block2Vec. In this work, we use an empirical value \(\text{min}_f = 5\) for a good balance between complexity and block coverage.

Once the output layer of the neural network is built and the training set has been pre-processed, Block2Vec will train the neural network. Vector representation of each block and all weights in the neural network are randomly initialized. Each time, a sequence of block accesses inside a context window is sent to train. According to the training model, both input and expected output are generated and fed into the network. Given the current weights in the network, an output can be calculated. If the output matches the expected one, the training will move to the next context window. If the outputs are not correct, a back-propagation will happen to adjust all weights from the hidden layer to the input layer, and most importantly, the vector values of all input blocks.

![Two training models in Block2Vec: CBOW and Skip-gram.](image)

Block2Vec actually contains two different training models, both of which have been widely used in NLP [25, 26]. Shown in Fig. 5(a), the first model called Continuous Bag-of-Words (CBOW) is almost identical to what we have seen in the “filling-the-blank” example earlier in Fig. 1. The training criteria is to correctly classify the current (middle) block given several future and history blocks as the input. It does not consider the order of blocks in the trace history as both future and history block accesses are summed together in the hidden layer. The second one is called Skip-gram model, as shown in Fig. 5(b). Instead of predicting the current block based on the context, it tries to predict the context, i.e., two preceding blocks and two succeeding blocks in this example, based on the current block. The Skip-gram model actually considers the order of block accesses as it considers the input as a single block and the output forms a moving window on the block accesses sequence. This is critical for our use case since order is important in block correlations. In addition, Skip-gram is also able to obtain more accurate vector representation of blocks than CBOW simply because Skip-gram model allows more “targetted” update to the vectors of input block. Specifically, in Skip-gram model, only the vector of one block is updated by one back-propagation, while in CBOW model the change triggered by one back-propagation is distributed to the vectors of all input blocks. In the evaluation section (Section VI), we report a detailed computation time and accuracy comparison between these two models. Block2Vec allows users to choose either one as the training model. The default model is Skip-gram.
D. Time Sensitive Training

As described in the previous section, to train Block2Vec neural network, each time we choose a set of blocks in the context window to generate inputs and the expected outputs based on the chosen model (i.e., CBOW or Skip-gram) to feed the neural network. However, this does not consider the time sensitivity of block accesses. In a natural language, the time interval between two continuous words is not considered important, and they will not affect the correlation between the words. However, such interval is important for block correlations. For example, consider two block accesses: \([b_1, b_3]\) and \([b_2, b_3]\) with access times \([0, 4]\) and \([5, 6]\), respectively. The correlation between \(b_1\) and \(b_3\) should be considered less strong than that between \(b_2\) and \(b_3\) since the former has longer interval. A long interval indicates higher possibility of irrelevant data accesses.

Existing training algorithms only consider the distance of the order of block accesses. For example, word2vec utilizes a random sampling to differentiate the closeness of words. Specifically, each time for a word \(s_t\), instead of directly using the words within the context window \(k\), one could have a random window size as \(rare(k)\). Since the trace file will be fed multiple times to train the network, randomly sampling will give less weight to those distant words. However, such sampling strategy does not work well for block accesses since it does not reflect the time intervals between block accesses. In Block2Vec, we use a different way to sample the context window. Specifically, we also consider the elapsed time between block accesses in the context window. Two sets of blocks in the same order but with different time intervals will be considered differently. Fig. 6 shows how it works for CBOW model. In this example, if the current block is \(c\), we first choose \(a, b, d, e\) as they are inside the initial time window (i.e., 8ms). Then, we check block Ids inside a smaller context window (cut in half), and find out the inputs (within 4ms). Repeating this step for another half context window (i.e., 2ms), we have \(b, d\) as the input again. In this way, Block2Vec maximally leverages the closely sequential block accesses and also amplify the impact of closeness between block accesses.

E. Efficiency of Block2Vec

Block2Vec is the first method to consider each block as a high-dimensional vector and to train a deep neural network to learn such vector representation accurately. By leveraging the recent progress in deep learning, it delivers this promise with reasonable resource requirement.

![Fig. 7. The number of active blocks vs. \(min_f\) in Project2 trace.](image)

1) Memory Consumption: Block2Vec requires memory space to store the Huffman tree, weights of the neural network, and other auxiliary data structures. But, all memory consumption depends on the size of active blocks, which have high access frequency (larger than \(min_f\)) in the trace during the collection period. In fact, although a modern hard-disk can have billions of blocks (4TB / 4KB \(\approx\) 1 Billion), the frequently accessed (active) blocks during a time period are usually limited. For example, the MSR Project2 traces [38], collected in 2007 on an active commercialized server (their project building server) for a week’s time period, only access around 16 million different blocks, much smaller than the total number of blocks in a typical disk at that time (500GB/4KB \(\approx\) 134 Million). Moreover, as Block2Vec only considers blocks that are frequent in the trace (frequency above the threshold \(min_f\)), it will further reduce the number of blocks and hence reduce the memory consumption. Fig. 7 shows the number of active blocks vs. the minimal frequency (\(min_f\)) on the Project2 trace. We can easily observe that the number of active blocks drops significantly as the minimal frequency increases.

2) Computational Complexity: The training complexity of CBOW model is \(O(N \times D + D \times \log_2 V)\) [39]. Here, \(N\) is the size of the context window, \(D\) is the dimension of vector, and \(V\) is the size of active blocks. As \(V\) is actually much smaller than total number of blocks in disks as we have described, the training is reasonably fast. In fact, the training phase itself is faster than block correlation mining algorithms such as probability graph [18] or frequency mining like C-Miners [24]. The training phase of a probability graph needs to update \(N\) vertexes each time when a new block is accessed. To iterate all active blocks, the computation complexity becomes: \(N \times V\), which is also the computation complexity of C-Miners. The training complexity of Skip-
gram model is $O(N \times (D + D \times \log_2 V))$ [39]. Note that, building the Huffman tree is not considered a part of the training phase. It actually costs $O(V \times \log_2 V)$ to build such a tree from scratch. But, this is not needed for each run.

V. APPLICATIONS: CORRELATION-BASED BLOCK PREDICTION

Thanks to the vector representation by Block2Vec, block correlations can be quantitatively measured by their vector distances in the high-dimensional space. Such correlation can be used to predict future data block accesses given a sequence of current block accesses. The rationale of the prediction comes from the fact that the neural network is trained in a way that similar blocks should appear in the similar context. The simple correlation-based block prediction strategy works in this way: while I/O block accesses are being issued, the prediction algorithm keeps a look-back window to keep track past block accesses. The look-back window is as wide as the context window used to train the neural network. For each block access in the look-back window, starting from the latest to the oldest, we retrieve the nearest k blocks whose distances are closest to each block. As more distant block accesses have less impact on future accesses, we weight a factor α on the distances of older block accesses. In Block2Vec, we choose $\alpha = 1.1$ based on empirical analysis. All blocks are reversely ordered based on their distances, and top k blocks are picked as the predictions.

Note that, we do not use the trained neural network to predict the next block. The major reason comes from the Huffman tree optimization. Each time when we train the neural network, Block2Vec does not update all weights from the hidden layer to all nodes in the output layer. This helps reduce the computation time. It only updates the weights between the hidden layer and the nodes that represent the predicted outputs. Weights between hidden layer to other (incorrect) nodes of the Huffman tree are ignored and not suppressed. So, they might mislead the prediction algorithm when the same sequence occurs for prediction.

In real world, block prediction algorithms can be sophisticated. Many research efforts have been done in this space and many others are also actively going on. In this work, these sophisticated prediction algorithms are not our focus. Instead, in our implementation and evaluation, we just use the accuracy of the basic sequential/look-ahead prediction to measure different correlation mining algorithms.

VI. EXPERIMENTAL RESULTS

Block correlation mining is an intensively explored topic. There already exists multiple research as mentioned in Section II. In this evaluation, we compare Block2Vec with two well accepted methods: probability graph (PG) [17] and the sequential prediction (SP). The PG implemented is based on [18] except that the file vertex in original paper is changed to block here.

A. Data Trace Description

We use trace-driven simulations with several large disk traces collected in real systems. Specifically, we use the MSR Cambridge Traces [38] (MSR-Cambridge) from SNIA [40] as the test data set in this research. The MSR-Cambridge trace contains 1-week block I/O traces in enterprise servers at MSR-Cambridge. There are totally 36 I/O traces from 36 different volumes on 13 servers. We chose two of them from the servers Project2 and Proxy1 as the datasets for all evaluations. Project2 trace has approximately 29 million block I/O accesses, while Proxy1 trace has more (around 133 million) block I/O accesses. Evaluations on other trace files actually show the similar results. Among all block operation, we actually select 90% of the traces as the training set and the remaining 10% as the verification set.

B. Visualization of Block Correlations

Before the accuracy comparison of Block2Vec and other algorithms, we first visualize mined block correlations based on PG and Block2Vec (Skip-gram model) in Fig. 8. The baseline SP is not shown as it is just a diagonal line.

Both x-axis and y-axis are the block Ids. If two blocks are correlated, a tiny point will be plot. In this way, we show the overall detected correlations from different algorithms. From these figures, we observe: 1) the line close to diagonal, which represents the locality principle, is identified well by both algorithms; 2) although there are some differences, the overall visualization is similar for the two algorithms that blocks are grouped into different parts, which can be used to improve data organization. In evaluations below, we will quantitatively compare the accuracy of block correlations detected through block prediction.
C. Block2Vec Training Performance

A reasonable speculation about using deep learning techniques like Block2Vec into block correlation mining is their performance. In this subsection, we report the performance of training in different models, parameters and datasets. The hardware platform for this evaluation contains a 1.7GHz Intel Core i7 CPU, an 8GB memory and a 256GB SSD. No GPU or other accelerator is used.

Fig. 9 compares training speed of both CBOW and Skip-gram models against different vector dimension (i.e., from 30 to 100) on two traces (Project2 and Proxy1). The y-axis shows training speed in K blocks/thread/second. As we can see, longer vector decreases the training speed. Also, the training of Skip-gram is much slower than that of CBOW for both traces.

The training time on different datasets and training models are provided in Table I. It is interesting to see that although Fig. 9 indicates a much higher training speed on Proxy1 trace than on Project2 trace. But the training time for Proxy1 is much longer. This is mainly because Project2 contains 271K active blocks and 2.96 million total training sequences, while Proxy1 contains smaller (38K) active blocks and much more (13.3 million) total training sequences. A small number of active blocks significantly boosts the training speed. But, the training time largely increases for larger training set.

Table I

<table>
<thead>
<tr>
<th></th>
<th>Project2</th>
<th>Proxy1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBOW Model</td>
<td>120.12 s</td>
<td>881.95 s</td>
</tr>
<tr>
<td>Skip-gram Model</td>
<td>183.91 s</td>
<td>2862.5 s</td>
</tr>
</tbody>
</table>

The time here is recorded as a single iteration through the training set. We normally run multiple iterations to achieve the best accuracy. Note that both traces are collected from week-long run of production server, whereas the maximal training time is less than 1 hours. Hence, it is feasible to run Block2Vec regularly in real system.

D. Block2Vec Prediction Accuracy

As mentioned earlier, larger vector size and context window will slow down the training phase. Not surprisingly, they also impact the accuracy of block correlations. We further show the accuracy of mined correlations towards those different parameters in this subsection.

To evaluate the accuracy of Block2Vec, we use block prediction strategy described in Section V and measure the percentage of correct predictions. The prediction criteria is largely simplified: each time, we predict next block access with k candidates; if the real block access belongs to the k candidates, we consider it a hit, or else a miss. The accuracy is calculated as $\text{Accuracy} = \frac{\text{hit}}{\text{hit+miss}}$. Each time, we predict $k = 30$ blocks (the results of other possible k values are also reported in later evaluation) to testify the accuracy. In this evaluation, we use Project2 dataset as an example. Again, the first 90% of the total data trace was used to train the model and then the remaining 10% was for prediction.

The results are given in Fig. 10. There are several key observations. First, the Skip-gram model has a significantly higher accuracy than CBOW model, mainly because the Skip-gram model is able to capture the order information as described in Section IV-C. Second, the accuracy of the Skip-gram models increases for higher vector dimensions and larger context windows. But the change is fairly small, under 3%. Considering the increase of computation complexity shown in Fig. 9, a medium vector dimension (e.g., 50) and context window (e.g., 5) will be appropriate for real-world usage. Third, the accuracy of the CBOW model is not only limited (typically under 50%), it is also more obviously affected by vector dimension and context window size. In addition, it is interesting to see that its accuracy decreases with larger context window. This is mainly because that the order information is ignored in the CBOW model. So that, the longer context window it chooses, more order information is lost.
E. Block2Vec Comparison Evaluation

In the end, we compare Block2Vec with the widely adopted probability graph (PG) strategy and the basic sequential prediction (SP).

To predict the next block, the PG algorithm simply locates the current block in the graph and returns the top k neighbors whose edges have the largest co-occurrences. For a fair comparison, we use the same \min_f value to filter out the inactive blocks to accelerate training and also improve the accuracy. The SP method does not have training phase. Each time, we just select next k consecutive blocks as the predictions based on the current visit. Similar to PG, we also exclude the inactive blocks in the accuracy evaluation.

Fig. 11 reports the prediction accuracy on the Project2 trace based on different algorithms and k ranging from 5 to 30. The proposed Block2Vec with the Skip-gram model achieves the best accuracy among all algorithms, with 8% performance improvement than PG. The CBOW model is much less accurate than PG. SP has the bottom performance, indicating that most block accesses in this trace file are not sequential. For such a non-sequential trace, Block2Vec is able to achieve an impressive accuracy under such a simple prediction scheme.

Another point worth noting is that PG actually requires much longer training time than Block2Vec due to the time-consuming co-occurrence updates on edges. In fact, to train on Project2 trace, which has around 2.9 million block access, the algorithm costs more than 100 minutes to finish.

VII. CONCLUSION AND FUTURE WORK

In this research, we propose to use high-dimensional vectors to represent blocks. Based on such an approach, we design and implement Block2Vec, a deep learning strategy to learn the best vector representations of blocks by training a deep neural network. To the best of our knowledge, this is the first time that a deep learning technique for vectorizing block objects is used in block correlation mining. We introduce and discuss the design and implementation details of Block2Vec and present detailed evaluations on both training cost and accuracy, with comparison to two other well-known methods, probability graph and sequential prediction. These results confirm that Block2Vec is a practical and accurate way to learn block correlation in storage systems. In the future, we will further apply the proposed solution on object-based parallel file systems to combine mined vector representations of blocks and other sequence prediction algorithms like recursive neural network to conduct more accurate block predictions.

VIII. ACKNOWLEDGEMENT

This research is supported in part by the National Science Foundation under grants CCF-1409946 and CNS-1338078.

REFERENCES

