Hystor: Making the best use of solid state drives in high performance storage systems

Authors: Feng Chen
David Koufaty
Xiaodong Zhang
Overview

• Introduction.
• Performance advantages of SSD.
• Deciding a metric and encoding it.
• The design of Hystor.
• Evaluation.
• Conclusion.
Overview

- **Introduction.**
- Performance advantages of SSD.
- Deciding a metric and encoding it.
- The design of Hystor.
- Evaluation.
- Conclusion.
Following are the important issues for fully exploiting the SSD performance:

• Effectively identifying the most performance critical blocks.
 : Performance gains highly dependent on workload access patterns.
 : Hence identifying the blocks which are going to be accessed is essential.

• Efficiently maintaining data access history with low overhead for accurately characterizing access patterns.
• Avoiding major kernel changes in existing systems while effectively implementing the hybrid storage management policies.
Overview

• Introduction.

• Performance advantages of SSD.

• Deciding a metric and encoding it.

• The design of Hystor.

• Evaluation.

• Conclusion.
Performance advantages of SSD

• To understand the relative performance strengths, four typical workloads, namely random read/write, sequential read/write are generated using Intel open storage toolkit.

• Storage devices:
 Intel X25-E 32GB SSD
 15,000 RPM Seagate Cheetah 15.5k SAS HDD
• Most significant performance gain in random read on the SSD.
• For 4KB random reads: 7.7 times more
• For 256KB sequential reads 2 times.
Most significant performance gain in random writes on the SSD.

- For 4KB random writes: 28.5 times more
- For 256KB sequential writes: 1.5 times more
Conclusions:

• Achievable performance benefits are highly dependent on workload access patterns, and we must identify the blocks that can bring the most performance benefits by migrating them into SSDs.

• Random writes can achieve almost identical performance as sequential writes.
Overview

• Introduction.
• Performance advantages of SSD.
• Deciding a metric and encoding it.
• The design of Hystor.
• Evaluation.
• Conclusion.
• Associate each block with a selected metric and update the metric value by observing accesses to the block.

• Frequency/request size graph is the closest to the latency curve and hence will be the most effective one.
• Representing indicator metric:

\[b = 2^{\max(0, 7 - \lfloor \log_2 N \rfloor)} \]

The technique of encoding request size and frequency is called inverse bitmap. When a block is accessed by a request of N sectors, an inverse bitmap is calculated using above formula.

It encodes request size into a single byte. The smaller the request is, the bigger the inverse bitmap is.
Overview

• Introduction.
• Performance advantages of SSD.
• Deciding a metric and encoding it.
• The design of Hystor.
• Evaluation.
• Conclusion.
Architecture of Hystor
Hystor has three major components: remapper, monitor, data mover.

- **Remapper**: maintains mapping table to track the original location of blocks on the SSD.
- **Monitor**: Collects I/O requests and updates the block table to profile workload patterns. It analyzes the data access history, identifies the blocks which require remapping and requests data mover.
- **Data Mover**: relocate data blocks across storage devices. Update the data table.
Logical block Mapping:

- Each logical block is directly mapped to a physical block in the HDD and indexed using logical block number (LBN).
- A logical block is selected to remap to SSD and its physical location is chosen dynamically.
- A mapping table is maintained to keep track of remapped logical blocks only and hence the spatial overhead of it is small and proportional to the SSD size.
• Major role: Storage
 Minor role: write back buffer.
• Two types of blocks are remapped:
 1) high cost data blocks, which are identified by analyzing data access history.
 2) file system metadata blocks.
Managing the write-back area:

- The blocks in the write-back area are managed in two lists: clean list and dirty list.
- Whenever a write request comes, a block from clean list is allocated.
- If the number of dirty blocks in dirty list reaches a certain predefined level, a scrubber is awakened and all these blocks are written to HDD.
- SSDs used in this system are high end SSDs. Their MTBF for them is 2 million hours and hence they won't wear out with few number of erase/cycles.
Overview

• Introduction.
• Performance advantages of SSD.
• Deciding a metric and encoding it.
• The design of Hystor.
• Evaluation.
• Conclusion.
• Prototyped Hystor in the Linux kernel 2.6.25.8 as a stand alone kernel module with 2500 loc. The user level Monitor is implemented with 2400 loc.

• Experimental setup:

<table>
<thead>
<tr>
<th></th>
<th>X25-E SSD</th>
<th>CHEETAH HDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITY</td>
<td>32GB</td>
<td>73GB</td>
</tr>
<tr>
<td>INTERFACE</td>
<td>SATA2</td>
<td>SAS</td>
</tr>
<tr>
<td>READ BANDWIDTH</td>
<td>250 MBPS</td>
<td>125 MBPS</td>
</tr>
<tr>
<td>WRITE BANDWIDTH</td>
<td>180 MBPS</td>
<td>125 MBPS</td>
</tr>
</tbody>
</table>
Workloads and Important Terms

• Three Workloads: Postmark, Email, TPC-H Q1

• Execution times on the Y axis are normalized to that of running on the SSD-only system.

• For comparison purpose, a horizontal line is plotted on the graphs which indicates running on the HDD only system.

• A request to blocks resident in the SSD is considered a hit, otherwise a miss. Hit ratio describes what % of request are served from SSD.
(a) Postmark (Time)

(b) Postmark (Hit Ratio)

POSTMARK
Email

(b) Email (Time)

(e) Email (Hit Ratio)
TPC-H Q1 (Time)

(c) TPC-H Q1 (Time)

TPC – H Q1
Overview

• Introduction.
• Performance advantages of SSD.
• Deciding a metric and encoding it.
• The design of Hystor.
• Evaluation.
• Conclusion.
Conclusion

Complete replacement of HDD by SSD is not beneficial. Hence we need to find the fittest position of SSDs in the existing systems to strike a right balance between performance and cost. In this study, a simple yet effective metric is used to find the best suitable data that can be held in SSD. Use of a SSD as a write back buffer was also effective.
Thank You...