Comprehensive Benchmark Suite for SSD

Anupam Tambi
Member DISCL

08/06/2011
Introduction

- Solid-State Drives (SSDs) predicted to replace HDDs
 - SSDs have greater durability and speed over HDDs
 - HPC systems start shifting to SSDs
- Traditional benchmarks inadequate for SSDs
 - SSDs show best case results on traditional benchmarks
 - Do not reflect the actual ability of the SSD well
 - Do not offer insights of the measurement
- We propose a Comprehensive Benchmark Suite for SSDs (CBS-SSD)
 - Includes SSD specific benchmarks in addition to traditional benchmarks
 - A better comparison tool that give realistic values
Comprehensive Benchmark Suite for SSD

- Traditional features benchmarked
 - Bandwidth
 - Throughput
 - Block erasure latency
 - Internal concurrency
 - Wear-levelling efficiency
 - Block alignment delay
 - Durability

- SSD specific features benchmarked

Comprehensive Benchmark Suite for SSDs (CBS-SSD)
Comprehensive Benchmark Suite for SSD

- CBS-SSD consists of
 - *Traditional features measured*
 - Bandwidth
 - Throughput
 - *SSD Specific features measured*
 - Block Erasure latency
 - Internal Concurrency
 - Wear Leveling efficiency
 - Block Alignment
 - Durability
Block Erasure Latency

- Most SSDs are NAND based
- If a block containing data with a binary value ‘0’ has to be changed to ‘1’, the whole block would have to be erased and the whole block re-written with the new value
- This causes a delay in the modify operation
- Measuring this time delay for modifying one ‘0’ to ‘1’ for various SSD devices would be an effective benchmark
- Implemented by selecting a block that contains a ‘0’ bit and is masked with a ‘1’ bit
- The time taken by the SSD to carry out this operation is measured
Wear Leveling Efficiency Check

- Wear-leveling widely used in SSDs to make sure that no single flash unit is worn out due to repeated usage
- Wear leveling distributes each single new write operation to a new location on the SSD
- Measuring the speed of wear leveling is very important as it can add a lot of over-head
- CBS-SSD injects requests of constantly increasing sizes to SSD and measures the time taken
 - A black-box approach
- A perfect wear leveling algorithm would show a balanced pattern
Internal Concurrency Check

- This benchmark measures IOPS when read and write operations are performed concurrently on different planes of the SSD.
- This would give a better understanding of the power of the on-chip processor of the SSD in resolving race conditions.
- Implemented by a black-box approach as well.
- CBS-SSD injects requests of constantly increasing sizes to the SSD and measures the time taken.
- This helps find the number of concurrent planes.
- Data with sizes that are multiples of the number of planes are written to the SSD and the times are measured.
- Comparing these times would show how efficiently the planes are concurrently written.
Block Alignment Delay Check

- NAND flash devices are divided into erasable blocks composed of multiple pages
- A flash block that contains data must be fully erased prior to writing new data to the block
- When the partitions are misaligned, write performance typically suffers a great deal
- The erasure process for a single block can take up to several milliseconds
- Unit block size of the SSD is determined and data sizes that are not multiples of the block size is written
- Time taken to write is measured and the delay is calculated
Block Alignment Delay Check

Aligned Partition

OS

SSD Blocks

Misaligned Partition

OS

SSD Blocks
Durability Check

- One drawback of SSDs is that SSDs have a limited number of write operations that can be performed.
- The efficiency of the SSD degrades as more and more write operations are performed.
- The lifetime of the SSD depends on factors like the wear leveling algorithm used.
- A benchmark to measure efficiency of the wear-leveling algorithm would help to check if the every write operation is distributed properly or not.
Preliminary Results

- CBS-SSD reports and compares the performance benchmarked for each feature.
- The block erasure time and the performance of the internal concurrency check are demonstrated.
- Comparisons are based on six SSDs, with block size of 128KB, 256KB, and 512KB and concurrent planes of 2 and 4 respectively.

<table>
<thead>
<tr>
<th></th>
<th>Block Size</th>
<th>No of Concurrent planes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSD-A</td>
<td>128 KB</td>
<td>2</td>
</tr>
<tr>
<td>SSD-B</td>
<td>256 KB</td>
<td>2</td>
</tr>
<tr>
<td>SSD-C</td>
<td>512 KB</td>
<td>2</td>
</tr>
<tr>
<td>SSD-D</td>
<td>128 KB</td>
<td>4</td>
</tr>
<tr>
<td>SSD-E</td>
<td>256 KB</td>
<td>4</td>
</tr>
<tr>
<td>SSD-F</td>
<td>512 KB</td>
<td>4</td>
</tr>
</tbody>
</table>
Preliminary Results (Contd..)

- Performance comparison of block erasure times
Preliminary Results (Contd..)

- Performance comparison of internal concurrency

![Graph showing time vs data size for different SSDs](image-url)